| Home > Publications database > Multimodal Covariance Network Reflects Individual Cognitive Flexibility > print |
| 001 | 1023459 | ||
| 005 | 20250204113806.0 | ||
| 024 | 7 | _ | |a 10.1142/S0129065724500187 |2 doi |
| 024 | 7 | _ | |a 0129-0657 |2 ISSN |
| 024 | 7 | _ | |a 1793-6462 |2 ISSN |
| 024 | 7 | _ | |a 10.34734/FZJ-2024-01698 |2 datacite_doi |
| 024 | 7 | _ | |a 38372035 |2 pmid |
| 024 | 7 | _ | |a WOS:001164162800001 |2 WOS |
| 037 | _ | _ | |a FZJ-2024-01698 |
| 082 | _ | _ | |a 610 |
| 100 | 1 | _ | |a Jiang, Lin |0 P:(DE-HGF)0 |b 0 |
| 245 | _ | _ | |a Multimodal Covariance Network Reflects Individual Cognitive Flexibility |
| 260 | _ | _ | |a Singapore [u.a.] |c 2024 |b World Scientific Publ. Co. |
| 336 | 7 | _ | |a article |2 DRIVER |
| 336 | 7 | _ | |a Output Types/Journal article |2 DataCite |
| 336 | 7 | _ | |a Journal Article |b journal |m journal |0 PUB:(DE-HGF)16 |s 1712653178_29216 |2 PUB:(DE-HGF) |
| 336 | 7 | _ | |a ARTICLE |2 BibTeX |
| 336 | 7 | _ | |a JOURNAL_ARTICLE |2 ORCID |
| 336 | 7 | _ | |a Journal Article |0 0 |2 EndNote |
| 520 | _ | _ | |a Cognitive flexibility refers to the capacity to shift between patterns of mental function and relies on functional activity supported by anatomical structures. However, how the brain's structural-functional covarying is preconfigured in the resting state to facilitate cognitive flexibility under tasks remains unrevealed. Herein, we investigated the potential relationship between individual cognitive flexibility performance during the trail-making test (TMT) and structural-functional covariation of the large-scale multimodal covariance network (MCN) using magnetic resonance imaging (MRI) and electroencephalograph (EEG) datasets of 182 healthy participants. Results show that cognitive flexibility correlated significantly with the intra-subnetwork covariation of the visual network (VN) and somatomotor network (SMN) of MCN. Meanwhile, inter-subnetwork interactions across SMN and VN/default mode network/frontoparietal network (FPN), as well as across VN and ventral attention network (VAN)/dorsal attention network (DAN) were also found to be closely related to individual cognitive flexibility. After using resting-state MCN connectivity as representative features to train a multi-layer perceptron prediction model, we achieved a reliable prediction of individual cognitive flexibility performance. Collectively, this work offers new perspectives on the structural-functional coordination of cognitive flexibility and also provides neurobiological markers to predict individual cognitive flexibility.Keywords: Cognitive flexibility; EEG-MRI; multimodal covariance network; response prediction; trail-making test. |
| 536 | _ | _ | |a 5253 - Neuroimaging (POF4-525) |0 G:(DE-HGF)POF4-5253 |c POF4-525 |f POF IV |x 0 |
| 588 | _ | _ | |a Dataset connected to CrossRef, Journals: juser.fz-juelich.de |
| 700 | 1 | _ | |a Eickhoff, Simon B. |0 P:(DE-Juel1)131678 |b 1 |
| 700 | 1 | _ | |a Genon, Sarah |0 P:(DE-Juel1)161225 |b 2 |
| 700 | 1 | _ | |a Wang, Guangying |0 P:(DE-HGF)0 |b 3 |
| 700 | 1 | _ | |a Yi, Chanlin |0 P:(DE-HGF)0 |b 4 |
| 700 | 1 | _ | |a He, Runyang |0 P:(DE-HGF)0 |b 5 |
| 700 | 1 | _ | |a Huang, Xunan |0 P:(DE-HGF)0 |b 6 |
| 700 | 1 | _ | |a Yao, Dezhong |0 P:(DE-HGF)0 |b 7 |
| 700 | 1 | _ | |a Dong, Debo |0 P:(DE-Juel1)178872 |b 8 |
| 700 | 1 | _ | |a Li, Fali |0 P:(DE-HGF)0 |b 9 |
| 700 | 1 | _ | |a Xu, Peng |0 P:(DE-HGF)0 |b 10 |e Corresponding author |
| 773 | _ | _ | |a 10.1142/S0129065724500187 |g p. 2450018 |0 PERI:(DE-600)1498197-X |n 4 |p 2450018 |t International journal of neural systems |v 34 |y 2024 |x 0129-0657 |
| 856 | 4 | _ | |y OpenAccess |u https://juser.fz-juelich.de/record/1023459/files/jiang-et-al-2024-multimodal-covariance-network-reflects-individual-cognitive-flexibility.pdf |
| 856 | 4 | _ | |y OpenAccess |x icon |u https://juser.fz-juelich.de/record/1023459/files/jiang-et-al-2024-multimodal-covariance-network-reflects-individual-cognitive-flexibility.gif?subformat=icon |
| 856 | 4 | _ | |y OpenAccess |x icon-1440 |u https://juser.fz-juelich.de/record/1023459/files/jiang-et-al-2024-multimodal-covariance-network-reflects-individual-cognitive-flexibility.jpg?subformat=icon-1440 |
| 856 | 4 | _ | |y OpenAccess |x icon-180 |u https://juser.fz-juelich.de/record/1023459/files/jiang-et-al-2024-multimodal-covariance-network-reflects-individual-cognitive-flexibility.jpg?subformat=icon-180 |
| 856 | 4 | _ | |y OpenAccess |x icon-640 |u https://juser.fz-juelich.de/record/1023459/files/jiang-et-al-2024-multimodal-covariance-network-reflects-individual-cognitive-flexibility.jpg?subformat=icon-640 |
| 909 | C | O | |o oai:juser.fz-juelich.de:1023459 |p openaire |p open_access |p VDB |p driver |p dnbdelivery |
| 910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 1 |6 P:(DE-Juel1)131678 |
| 910 | 1 | _ | |a HHU Düsseldorf |0 I:(DE-HGF)0 |b 1 |6 P:(DE-Juel1)131678 |
| 910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 2 |6 P:(DE-Juel1)161225 |
| 910 | 1 | _ | |a HHU Düsseldorf |0 I:(DE-HGF)0 |b 2 |6 P:(DE-Juel1)161225 |
| 910 | 1 | _ | |a Rehabilitation Center, Qilu Hospital of Shandong University, Jinan 250012, P. R. China E-mail Address: xupeng@uestc.edu.cn |0 I:(DE-HGF)0 |b 10 |6 P:(DE-HGF)0 |
| 913 | 1 | _ | |a DE-HGF |b Key Technologies |l Natural, Artificial and Cognitive Information Processing |1 G:(DE-HGF)POF4-520 |0 G:(DE-HGF)POF4-525 |3 G:(DE-HGF)POF4 |2 G:(DE-HGF)POF4-500 |4 G:(DE-HGF)POF |v Decoding Brain Organization and Dysfunction |9 G:(DE-HGF)POF4-5253 |x 0 |
| 914 | 1 | _ | |y 2024 |
| 915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0160 |2 StatID |b Essential Science Indicators |d 2023-08-24 |
| 915 | _ | _ | |a Creative Commons Attribution-NonCommercial CC BY-NC 4.0 |0 LIC:(DE-HGF)CCBYNC4 |2 HGFVOC |
| 915 | _ | _ | |a WoS |0 StatID:(DE-HGF)0113 |2 StatID |b Science Citation Index Expanded |d 2023-08-24 |
| 915 | _ | _ | |a OpenAccess |0 StatID:(DE-HGF)0510 |2 StatID |
| 915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0200 |2 StatID |b SCOPUS |d 2024-12-06 |
| 915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0300 |2 StatID |b Medline |d 2024-12-06 |
| 915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0199 |2 StatID |b Clarivate Analytics Master Journal List |d 2024-12-06 |
| 915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1160 |2 StatID |b Current Contents - Engineering, Computing and Technology |d 2024-12-06 |
| 915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0150 |2 StatID |b Web of Science Core Collection |d 2024-12-06 |
| 915 | _ | _ | |a JCR |0 StatID:(DE-HGF)0100 |2 StatID |b INT J NEURAL SYST : 2022 |d 2024-12-06 |
| 915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0600 |2 StatID |b Ebsco Academic Search |d 2024-12-06 |
| 915 | _ | _ | |a Peer Review |0 StatID:(DE-HGF)0030 |2 StatID |b ASC |d 2024-12-06 |
| 915 | _ | _ | |a IF >= 5 |0 StatID:(DE-HGF)9905 |2 StatID |b INT J NEURAL SYST : 2022 |d 2024-12-06 |
| 920 | _ | _ | |l yes |
| 920 | 1 | _ | |0 I:(DE-Juel1)INM-7-20090406 |k INM-7 |l Gehirn & Verhalten |x 0 |
| 980 | _ | _ | |a journal |
| 980 | _ | _ | |a VDB |
| 980 | _ | _ | |a UNRESTRICTED |
| 980 | _ | _ | |a I:(DE-Juel1)INM-7-20090406 |
| 980 | 1 | _ | |a FullTexts |
| Library | Collection | CLSMajor | CLSMinor | Language | Author |
|---|