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SUMMARY
Cerebellar involvement in both motor and non-motor functions manifests in specific regions of the human
cerebellum, revealing the functional heterogeneity within it. One compelling theory places the heterogeneity
within the cerebellar functional hierarchy along the sensorimotor-association (SA) axis. Despite extensive
neuroimaging studies, evidence for the cerebellar SA axis from different modalities and scales was lacking.
Thus, we establish a significant link between the cerebellar SA axis and spatio-molecular profiles. Utilizing the
gene set variation analysis, we find the intermediate biological principles the significant genes leveraged to
scaffold the cerebellar SA axis. Interestingly, we find these spatio-molecular profiles notably associated with
neuropsychiatric dysfunction and recent evolution. Furthermore, cerebello-cerebral interactions at genetic
and functional connectivity levels mirror the cerebral cortex and cerebellum’s SA axis. These findings can
provide a deeper understanding of how the human cerebellar SA axis is shaped and its role in transitioning
from sensorimotor to association functions.
INTRODUCTION

Beyond its traditional role in motor coordination, the human cer-

ebellum is extensively involved in higher-order non-motor func-

tions, such as cognition and emotion.1,2 Coming to understand

this inspired a compelling theory that situates the functional di-

versity within the cerebellar functional hierarchy along the senso-

rimotor-association (SA) axis,3 a concept well established in the

cerebral cortex.4 The SA axis is well portrayed by the functional

gradient (FG)5 using functional neuroimaging, which follows a

progression from motor to attentional/executive to involvement

in the default-mode network. The presence of the cerebellar

SA axis provides valuable insights into the functional role of the

human cerebellum and its contribution to overall brain func-

tion.5–7 It sheds light on how the cerebellum influences ongoing

actions and prepares for future goals8 while also serving as a

research paradigm for understanding clinical functional impair-

ments.9 However, despite studies confirming the existence

and clinical significance of the cerebellar SA axis using functional
C
This is an open access article under the CC BY-N
imaging, there remains a lack of evidence from different modal-

ities and scales to support the existence of the axis and reveal its

biological relevance.

The human cerebellum has long been found to have a rela-

tively uniform intrinsic microcircuitry.1 How can a highly similar

cellular constructure co-occur with the human cerebellar SA

axis?On the one hand, the functional differentiation of the human

cerebellum has been thought to be primarily derived from extra-

cerebellar connections.1,10 This can be initially appreciated by

the massive anatomical connections between the cerebellum

and the cerebral cortex and subcortical structures.11–14 The

anterior lobe of the cerebellum, which corresponds to the

somatomotor function, possesses polysynaptic projections to

the cerebral motor region,15–17 while cerebellar regions related

to associative functions, such as Crus I and Crus II, establish

connections with the cerebral association cortex.15,18 On the

other hand, accumulating evidence in animals reveals micro-

structural differences between the motor and non-motor regions

of the cerebellum via a variety of techniques, including
ell Reports 43, 113770, February 27, 2024 ª 2024 The Author(s). 1
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differences in zebrin patterns,19 firing frequencies,20 and cell-

type specialization21 among others. This suggests that micro-

scale variations may serve as evidence in favor of another mo-

dality and scale for the human cerebellar SA axis.2 Although

the intrinsic microcircuitry of the human cerebellum has long

been believed to be highly homogeneous,1 it is possible that

subtle microscale variations, similar to those observed in animal

models, exist within the context of high microcircuit homogene-

ity.2,22 As yet, such explorations have been severely precluded

from humans because most of these techniques can only be

implemented in animals, and the direct extrapolation of findings

to the human cerebellum is hindered by species-specific

features.23,24

Imaging-transcriptomics analysis has emerged as a promising

approach for bridging these knowledge gaps25–27 by integrating

microscopic transcriptome data with macroscopic neuroimag-

ing phenotypes to enable brain-wide spatial analysis.28,29 It en-

hances our understanding of the molecular patterns underlying

the human cerebellar functional organization,30 offering insights

beyond those from animal studies. However, current imaging-

transcriptomics studies often rely on spatially correlated genes

and bioinformatics databases to explain their functions, ignoring

the detailed relationship between the biological function of

genes and imaging phenotypes.29 To address this limitation,

gene set variation analysis (GSVA) offers a more comprehensive

approach.31 GSVA detects subtle biological activity changes by

transforming gene expression data into a gene set3 samplema-

trix,31 enabling a functional gene-unit-centric analysis that ex-

plores the underlying biological principles behind brain features.

Although previous researchers have proposed the extension of

GSVA for causal inference,31 its application in spatial brain-

wide studies remains limited. Incorporating GSVA with imaging

transcriptomics presents a promising opportunity to identify

microscale mechanisms underlying the human cerebellar SA

axis and unravel the biological principles associated with the

transition from sensorimotor to association functions.

This study aimed to explore the spatio-molecular profiles un-

derlying the SA axis of the human cerebellum. The research

focused on addressing three specific questions: first, do signifi-

cant changes in spatial gene expression involve shaping the

cerebellar SA axis (Figure 1A)? Second, what intermediate bio-

logical principlesmediate the shaping of the SA axis as observed

in the animal cerebella, and are there links between thesemolec-

ular substrates and neurodevelopment, evolution, and neuro-
Figure 1. Analysis pipeline
(A) Prediction of the SA axis, which is characterized by FG, using transcriptomic

assigned the voxel-wise FG (right) values to the AHBA cerebellar samples (left) to p

PLSR. Each gene’s regression coefficient was named the gene contribution indi

icance of GCI was validated using a permutation test, which conserved the spat

represent the gene set with significant effects when predicting the cerebellar FG

(B) The biological functioning of GCIsig was used to address how the GCIsig engag

explore the underlying stepwise biological principle that scaffolds the SA axis.

between GCIsig and ex vivo psychiatric gene dysfunction, temporal developmen

(C) How does the GCIsig interact with the cerebral cortex at the genetic and FC l

cerebral cortex samples (on the left). We called this value the cerebellar hierarch

which the genomic signature of the cerebellar SA axis is reflected in the gene ex

calculated usingmultiple comparison tests to obtain the cerebral cortex samplesw

was termed CHRISsig) to explore their FC with the cerebellum (right).
psychiatric disorders related to the cerebellum (Figure 1B)?

Last, how do the spatio-molecular profiles interact with the cere-

bral cortex at both the genetic and functional connectivity (FC)

levels, given that the functional diversity of the cerebellum is

thought to be mainly derived from its connections with the cere-

bral cortex1,3 (Figure 1C)? To elucidate this, we first used gene

expression data to predict the cerebellar SA axis and to obtain

a gene contribution indicator (GCI) for each gene, as well as a

set of the genes with significant GCI (GCIsig) by spatial auto-cor-

relation preserved permutation. GSVAwas then applied toGCIsig
to inquire about the intermediate biological principles and

explore the link between GCIsig and neuropsychiatric disorders,

neurodevelopment, and evolution. Finally, we evaluated the cer-

ebello-cerebral coordination at the genetic and FC levels based

on the GCIsig and found substantial coordination between the

two and that they mirrored the SA axis. Taken together, the find-

ings of this study could offer insights into the genetic, molecular,

cellular, and pathways variations as well as the cerebello-cere-

bral interactions that underpin the human cerebellar SA axis

and shed light on the significance of the SA axis and its underly-

ing spatio-molecular profiles in neuropsychiatric disorders and

evolution.

RESULTS

The SA axis characterized by the FG was significantly
predicted by GCIsig
The FG (Figure 2A) was defined by analyzing the similarity of all

cerebellar voxels in the FC matrix between the cerebellum and

extra-cerebellar structures using diffusion map embedding.

The principal component resulting from this analysis (first

gradient) accounted for the greatest amount of variance (0.51;

Figure S1). In terms of spatial distribution, FG extended from a

bilateral dissociation of lobules I–VI and VIII to the posterior

part of Crus I and II and the medial part of lobule IX7 (Figure 2A),

which essentially captured themain axis of themacroscale func-

tional organization of the cerebellum, i.e., the SA axis, ranging

from motor to attention to default mode processing.3,32

Regarding connectivity to the cerebral cortex, along the cere-

bellar FG, the significant positive FC to the cerebral cortical

sensorimotor area was decreased, but the significant positive

FC to the cerebral cortical association area was increased

(Figure 2A, right). From the independent task-based fMRI

studies,32 as the need for associative functioning increased in
gene expression to explore the genetic substrates underlying the SA axis. We

redict the sample-wise FG using transcriptome gene expression by employing

cator (GCI) to quantify the importance of each gene in the SA axis. The signif-

ial auto-correlation. The set of genes with significant GCI was called GCIsig to

.

es in shaping the SA axis. Gene set variation analysis (GSVA) was introduced to

Multiple datasets and bioinformatic tools were leveraged to explore the link

t, and evolution rate.

evels? We calculated the correlations between GCIsig and gene expression in

ical representative index of similarity (CHRIS), which represents the extent to

pression profile of a cerebral cortical sample. The significance of CHRIS was

ith significant CHRIS (the set of cerebral cortex sampleswith significant CHRIS
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Figure 2. Prediction of the cerebellar SA axis using transcriptomic gene expression

(A) The voxel-wise FG, which captured the SA axis of the human cerebellum, was calculated using the Human Connectome Project (HCP) by decomposing

the affine matrix derived from the grouped functional connectivity matrix between the cerebellum and extra-cerebellar region. The FG values were normalized to

the 0–1 level. Note that we focused on the first gradient, which explained the largest amount of the variance (Figure S1). The right figure shows FC between the

cerebral cortex and 100 cerebellar FG-sorted regions of interest (ROIs). The significant FC between 100 cerebellar FG-sorted ROIs with the cerebral cortex was

visualized across 7 networks (top). The 7 networks were sorted by the cerebral cortical SA axis. Two of these 100 ROIs were picked to visualize the voxel-wise FC

(bottom).

(B) Histogram representing the distribution of the correlation between the actual and predicted sample FG across 1013 10-fold cross-validated PLSR models

(left). The median correlation (the median line in the left graph) was 0.46 (right), and the significance psa < 0.01 was validated using BrainSMASH (a permutation

test with preserved spatial auto-correlation; embedded figure).

(C) Histogram representing the distribution of regression coefficient of each gene, which was referred to as the GCI to show the degree of importance when

predicting the FG.

(D) Histogram representing the distribution of GCIsig (left). The right word cloud shows the top 400 GCIsig (the full list can be found in Data S1), with red repre-

senting the positive GCIsig and blue representing the negative GCIsig; the color density and word size represent the absolute value of GCI.

See also Figures S2 and S3.
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the task (e.g., from hand pressing to distraction to word compre-

hension), themedian FG values of the voxels within the area acti-

vated during this task also increased (Figure S1C). The corre-

spondence between these three views, the spatial distribution

pattern of the cerebellar FG and its representation across task

fMRI, as well as the pattern of connectivity with the sensorimotor

and associative areas of the cerebral cortex, suggests that the

cerebellar FG reflects the SA axis within the cerebellum.

A partial least-squares regression (PLSR) algorithm was used

to create a model predicting the FG of each sample based on

its gene expression profile (Figure 1A). The optimal component

number of six was chosen based on a 1003-embedded

10-fold cross-validation (CV) (Figure S2), and the prediction per-

formance was evaluated by the median model from a 1013-

embedded 10-fold CV (Figure 2B; 1013 was chosen to identify

the median model easily). The correlation between the predicted

FG and the actual FG was 0.46 (Figure 2B) and remained signif-
4 Cell Reports 43, 113770, February 27, 2024
icant after a permutation test, which preserved the spatial auto-

correlation (we refer to the p value after this permutation test as

psa [psa < 0.01, Figure 2B right]). In addition, a leave-one-donor-

out prediction demonstrated consistency in genomic character-

istics across individuals (Figure S3). All these suggest that the SA

axis, as characterized by the FG, could be significantly predicted

by the transcriptomic gene expression.

Next, we filtered out the significant genes that actually contrib-

uted to the FG rather than being associated by chance. The

regression coefficient of each gene from the PLSR model repre-

sents the degree of contribution of each gene in predicting the

FG. It thus could act as a GCI (Figure 2C). The significance of

each GCI was evaluated by a permutation test, which conserved

the spatial auto-correlation information from the FG, and theGCIs

that survived Bonferroni correction, i.e., psa < (0.05/15,624) were

considered significant. All the genes that had a significant GCI

were collectively termed the GCIsig (Figure 2D).
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Intermediate biological processes that the GCIsig
leveraged to anchor the SA axis
Since the GCIsig contributes significantly to the cerebellar

SA axis, how does it work? A bin-based GSVA strategy was

utilized combined with the data sources included Gene

Ontology (GO),33,34 Kyoto Encyclopedia of Genes and Genomes

(KEGG),35 and cerebellar cell types data from DropViz.36

Combining theGO (Figure 3, blue box) and KEGG (Figure 3, or-

ange box) results, hierarchical clustering of the samples based

on the gene set enrichment score was able to clearly separate

the sensorimotor from the association cerebellum. This suggests

that these molecular, cellular, and pathway components vary

along the SA axis and reach many levels of significant dissimi-

larity, especially at the two ends of the SA axis. This further re-

vealed that distinct biological features underlie the sensorimotor

and association areas of the cerebellum, as was found in exper-

imental animal models.19–21 Specifically, more neurotransmis-

sion processes were expressed higher in the association region,

such as integral components of the presynaptic active zone

membrane, calcium-mediated signaling,37 RIG I-like receptor

signaling, and hedgehog signaling pathway38 (Figure 3; Data

S3 and S4; Figures S4 and S5). Many processes that are signif-

icantly expressed in the sensorimotor cerebellum have previ-

ously been suggested to play an essential role in the motor func-

tion of the human cerebellum. These include the cytosolic

ribosome, which mediates the synthesis of proteins necessary

for the induction and maintenance of long-term depression in

the cerebellar sensorimotor area,39 aswell as the dendritic shafts

of Purkinje cells in the cerebellum, which are crucial for informa-

tion processing and integration in cerebellar motor learning40

and are in alignment with the cell-type GSVA results.

At the cell-type level, most cell types are distributed with no

significant changes across the human cerebellar SA axis, which

is consistent with the long-standing, largely homogeneous cy-

toarchitecture of the human cerebellum.1 The only exception is

the Purkinje neurons, which have a relatively higher expression

in the sensorimotor area (Figure 3, green box), but this higher

expression is not strong enough to dissociate the sensorimotor

from the association cerebellum (Figure S6). Most of the senso-

rimotor cerebellum has a relatively high presence of Purkinje

neurons, which is consistent with the close relationship between

these neurons andmotor behavior, which has been widely inves-

tigated.1,41 In contrast, the expression of Purkinje neurons in the

association cerebellum was relatively lower. But when we sepa-

rated the cerebellar samples into more bins, we were able to

observe the expression of Purkinje neurons in a part of the asso-

ciation cerebellum (Figure S6). This supports emerging evidence

of their role in cognitive functions, potentially linked to catechol-

amine signaling,42,43 which is consistent with the high expression

of monooxygenase- and oxidoreductase-related processes in

the association cerebellum observed by GO GSVA, as they are

both involved in the neurotransmission of catecholamines.44

In conclusion, the GSVA served to probe the possible interme-

diate molecular functions, cellular components, cell types, and

biological processes that linked GCIsig to the cerebellar SA

axis. Thus, we were able to provide evidence of the possible bio-

logical principles of how GCIsig scaffolds the SA axis, which is

primarily by engaging neurotransmission and the Purkinje cells.
Cerebellar SA axis and its underlying genetic basis
associated with multiple cerebellum-linked
neuropsychiatric disorders
Prior evidence suggested that the dysfunction of the cerebellar

functional organization plays a crucial role in various neurolog-

ical45,46 and psychiatric disorders,9,47 many of which possess

common underlying genetic risks.48 In light of this, could the ge-

netic basis underlying the cerebellar SA axis provide some evi-

dence or new perspectives on the role of the cerebellum in brain

disorders?

First, combining the GSVA with the disease gene network49

enabled the visualization of changes in disease relevance along

the cerebellar SA axis. Overall, more neurological disorders are

associated with the sensorimotor cerebellum, but more psychi-

atric disorders are associated with the association cerebellum

(Figure 3, purple box; Figure S7). This finding coincides with re-

ports that showed that depression-relevant shifts in resting-state

fMRI features were preferentially associated with heteromodal

cortical areas compared to unimodal cortical areas.50,51 Specif-

ically, significant involvement of the association cerebellum in

major affective disorder and Lewy body disease (Figure 3, purple

box) was observed. Twomain types of major affective disorder52

are major depressive disorder (MDD) and bipolar disorder (BD),

both of which have been linked to the cerebellum.47 For

example, a significant relationship between severe depressive

symptoms and the cerebellar salience network has been

observed in patients with MDD.53 Dementia in patients with

Lewy body disease showed gray matter loss in the posterior

and lateral areas of the cerebellum, which belong to the associ-

ation cerebellum.54 In contrast, some neurological disorders that

previously have been shown to relate to the cerebellum, such as

amyotrophic lateral sclerosis (ALS), engage more in the sensori-

motor cerebellum. A significantly increased FC of the cerebellum

also has been observed in patients with ALS.55

Then, in relation to the ex vivo psychiatric gene dysfunction da-

taset56 for five major psychiatric disorders (MDD, BD, autistic

spectrumdisorder [ASD], schizophrenia [SCZ], andalcohol abuse

disorder [AAD]),we found that theGCIwassignificantly correlated

with MDD, BD, ASD, and SCZ genetic dysfunction but not with

AAD (Figures 4A and S8). Since MDD, BD, ASD, and SCZ are all

characterized by mental disturbances, these findings are consis-

tent with the significant engagement in the associated cerebellum

of major affective disorder observed by the disease GSVA. This

indicated that theGCIof the in vivocerebellar SAaxis fromhealthy

Allen Human Brain Atlas (AHBA) subjects could capture gene

dysregulation in ex vivo brain tissue from patients with cere-

bellum-linked psychiatric disorders,51,57 one of which, i.e., SCZ,

has been characterized by a compressed cerebellar FG.9

Combining the disease GSVA with an ex vivo psychiatric gene

dysfunction analysis suggested that SA could be used as an im-

aging marker to investigate the cerebellar cross-disorder role

and hinted at a possible convergence of SA alteration and

gene dysfunction across multiple psychiatric disorders.

Developmental trajectory and evolution rate of GCIsig
To give an overall temporal profile of GCIsig, the GCIsig could be

clustered into 2 clusters (Figures 4C and S9), one of which was

expressed more strongly before birth (n = 481) and was
Cell Reports 43, 113770, February 27, 2024 5



Figure 3. Surrogate intermediate biological principle scaffolding the SA axis

By leveraging the GSVA (Figure 1B left), the expression of GCIsig along the SA axis was transformed into a gene set time bin matrix. The gene sets were separated

into four categories: Gene Ontology (GO; blue), Kyoto Encyclopedia of Genes and Genomes (KEGG; orange), cell type (green), and disease (purple).

(A) Differential expression analysis examined each gene set and found significant changes between the sensorimotor (blue) and association regions (red) of the

human cerebellum. Fold change >1 and p < 0.05 (false discovery rate [FDR] corrected) were used as indicators to threshold the significant gene sets.

(B) The heatmap shows the expression of the significant gene sets along the SA axis and the hierarchical clustering of the cerebellar sensorimotor and association

bins. Note that the 20 bin-based analysis is presented here; other bin strategies can be found in Figures S4–S7. Full results can be found in Data S2–S9.

6 Cell Reports 43, 113770, February 27, 2024
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Figure 4. Neuropsychiatric gene dysfunction relatedness, development trajectory, and differential evolution rateswith respect tomouse and

chimpanzee

(A) Association between GCI and ex vivo gene dysregulation in major depression (MDD), bipolar disorder (BD), autistic spectrum disorder (ASD), schizophrenia

(SCZ), and alcohol abuse disorder (AAD). The top left corner shows the correlation profiles for all the diseases. The height of the bar corresponds to themagnitude

(legend continued on next page)
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correlated with protein serine kinase activity, regulation of cellular

response to growth factor stimulus, and peptidyl-serine phos-

phorylation, all of which are involved in neurodevelopment-

related processes. The other cluster had a greater expression af-

ter birth andwasmainly associatedwith neurotransmission terms

that are primarily linked to neuropsychiatric disorders.58–60 These

results reinforce findings of significant neurotransmission en-

gagements in the association cerebellum and keep consistent

with its prolonged development.61 A more fine-grained clustering

(Figure S9) also suggests that different clusters have distinct tem-

poral tendencies and different enriched functions. In keepingwith

the consistency of the main results of the two clusters, they work

together to remind us that the genetic basis of the cerebellar SA

axis does not emerge suddenly but is formed gradually from fetal

life to adulthood step by step, as different components act during

different developmental windows.62

In addition to the ontogeny in the short period, we analyzed the

evolutionary rate, i.e., dN/dS,63 of GCIsig to test whether the

GCIsig experienced positive selection (dN/dS > 1), neutral selec-

tion (dN/dS = 1), or negative selection (dN/dS < 1) in both the

mouse-human and chimpanzee-human evolutionary processes.

More dN/dS > 1 (n = 35) was observed in the chimpanzee-human

evolution, whereas no dN/dS > 1was observed inmouse-human

evolution (Figure 4B). The difference was significant (p < 0.0001,

mean comparison by Welch’s t test). This implies that GCIsig
played a more crucial role in the evolution from chimpanzee to

human.Moreover, several genes of theGCIsig that was only posi-

tively selected during the evolution from chimpanzee to human,

such as TBL1XR1, RWDD3, and HNMT,64 were also linked to hu-

man accelerated regions (HARs).65 This suggests that the ge-

netic basis of the cerebellar SA axis in modern humans has

been subjected to positive selection relatively recently in human

evolution and that the cerebellar SA axis may have played a cen-

tral part in the emergence of uniquely human cognitive abilities

consistent with the extreme expansion of the human association

cerebellum.24,66

Cerebello-cerebral interaction at genetic and
connectivity levels
Given that the functional architecture of the human cerebellum

has long been thought to be determined by extra-cerebellar con-

nections,1 it is interesting to speculate on how this principle of

function acts on the SA axis and its spatio-molecular profiles.

First, by correlating the GCIsig with the cerebral cortical sam-

ple-wise gene expression (n = 1,539), we created the cerebellar

hierarchical representative index of similarity (CHRIS; Figure 5A,

left top), a value representing the degree to which the genomic

signature of the cerebellar SA axis is represented in the gene

expression profile of a cerebral cortical sample. To discover
of the correlation coefficient, indicating the strength and direction of the correlat

tervals. In the following five scatter plots, the binned analysis revealed a negative r

in MDD and a positive association in BD, ASD, and SCZ, but not in AAD. Other b

(B) The horizontal violin plot overlay offers a density distribution of the dN/dS ratio

human, and the Wilcoxon test comparison between them indicating significant di

just the dN/dS > 1 (right of the vertical dashed line) colored according dN/dS ma

(C) Utilizing the Mfuzz clustering method in GCIsig, development expression classi

found in Figure S9. Each cluster has a distinct temporal trajectory (middle) and b

8 Cell Reports 43, 113770, February 27, 2024
the locations in the cerebral cortex that have a significant genetic

correlation with the GCIsig, which supports the cerebellar SA

axis, a Bonferroni-corrected p < (0.05/1,539) was utilized to iden-

tify the significant cerebral cortical samples (the set of these ce-

rebral cortical samples with significant CHRIS was referred to as

CHRISsig, n = 130; Figure 5A, left bottom). CHRISsig
� (n = 15) and

CHRISsig
+ (n = 115) indicate more significant similarity with the

sensorimotor and association areas of the cerebellum, respec-

tively. By plotting the CHRISsig at the 7-network level (Figure 5A,

right), CHRISsig
� was found to be mainly located in the unimodal

networks, that is, the visual, somatomotor, and dorsal attention

networks, whereas CHRISsig
+ was mainly aggregated in the

transmodal networks, that is, the default, control, ventral atten-

tion, and limbic networks. This indicates that GCIsig, which sup-

ports the cerebellar SA axis, is genetically correlated with the ce-

rebral cortex and that the genetic correlation pattern mirrors the

cerebral cortical SA axis.67,68

Next, is it possible that CHRISsig has significant connections

with the cerebellum? CHRISsig
� (Figure 5B, top left) and

CHRISsig
+ (Figure 5B, bottom left) have a significant connection

with the cerebellum, and their FCs are quite different. CHRISsig
�,

which is significantly genetically correlated with the sensori-

motor cerebellum, has a positive connection with the V, VI, and

VIII lobules, which are aggregated in the somatomotor, ventral

attention, and visual networks (Figure 5B, right blue circle). In

contrast, CHRISsig
+, which is significantly genetically correlated

with the association cerebellum, has a positive connection with

the Crus I, Crus II, and IX lobules, which correspond to the limbic

and default networks as well as with part of the control networks

(Figure 5B, right red circle).

DISCUSSION

The goal of this study was to decode the spatio-molecular pro-

files underlying the cerebellar SA axis, which covers awide range

from genetic signatures, intermediate molecular patterns, cell

types, and biological processes to cerebello-cerebral interac-

tions. Along the cerebellar SA axis, there is increasing neuro-

transmission involvement, later maturation, more involvement

in evolution, and increased susceptibility to psychiatric symp-

toms. The distinct intrinsic genetic variations deep within the

microcircuit homogeneity genetically and functionally interact

with those of the cerebral cortex as well as mirroring the SA

axis of the human cerebral cortex and the cerebellum. Collec-

tively, these findings hint at the possibility of SA axis formation

at both the intrinsic progressive biological and cerebello-cere-

bral coordination levels and thus offer a springboard from which

to synthesize multi-level findings into a general characterization

of cerebellar function, as well as to go a step further to explore
ion with the disease phenotype. Error bars represent the 95% confidence in-

elationship between the GCI of the cerebellar SA axis and gene downregulation

in strategies can be found in Figure S8.

s, with blue representing mouse-human and orange representing chimpanzee-

fferences (Welch’s t test p < 0.0001). Each dot shows each gene of GCIsig and

gnitude.

fied GCIsig into 2 clusters (left). The choice of the optimal cluster number can be

iological function (right).



Figure 5. The CHRISsig distribution and its FC with the cerebellum

(A) By correlating the GCIsig with the gene expression of the cerebral cortex, we obtained the CHRIS (top left), which represents the genetic interaction between

the cerebral cortex and the gene substrates underlying the cerebellar SA axis, i.e., GCIsig. CHRISsig (bottom left) was evaluated by Bonferroni correction with a

correlation significance p < (0.05/1,539) and represents the set of cerebral cortical samples with significant CHRIS. The distribution of CHRISsig across 7 networks

(right) is shown by a boxplot ordered by the median value at the bottom (the mean is represented by a diamond marker with a white face and gray edge, while the

median is depicted by a white line; the whiskers, which illustrate the range of the data, are presented with a thicker line width).

(B) The FC between the CHRISsig
+ (top left) and CHRISsig

� (bottom left) and the human cerebellum was largely different, as was the distribution of FC across the

networks (right).
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the underestimated contribution of the cerebellar SA axis to hu-

man functions along with its role in neuropsychiatric disorders

and brain evolution.
Shaping of the cerebellar SA axis
The SA axis has long been identified in the cerebral cortex and

was found to be extensively associated with various features
Cell Reports 43, 113770, February 27, 2024 9
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derived from different modalities.4 But how the cerebellar SA

axis is established remains unexplored. We approached this

question from twomain perspectives: are there possible intrinsic

subtle genetic variations deep within the highmicrocircuit homo-

geneity, which have been demonstrated in animal cerebella, and

how do those relate to the widely accepted connections be-

tween the cerebellum and the cerebral cortex?

Recent animal discoveries have suggested that cerebellar

histology is not entirely uniform or homogeneous.2 Does the hu-

man cerebellum, previously believed to be characterized by a

uniform cytoarchitecture, also exhibit diverse compartments

with specialized cellular, molecular, and synaptic properties for

different functions, as observed in animal models?69,70 In this

study, we decoded the genetic, cellular, and biological pro-

cesses of the human cerebellar SA axis by introducing GSVA

into imaging-transcriptomic studies with the goal of describing

how the SA axis progresses at spatio-molecular level. Signifi-

cantly differently expressed gene sets were able to differentiate

sensorimotor and association areas of the cerebellum. This sug-

gests that the cerebellum seems to be more intrinsically micro-

scopically varied along the SA axis than traditionally thought,

so the biological configuration of the human cerebellum is not

entirely uniform or homogeneous if explored in more elaborate

detail.2,61,70

Meanwhile, the differences in Purkinje cells along the SA axis

were not very significant. Note that the results that we found do

not mean that Purkinje cells are not expressed in the association

cerebellum. Combined with the observed expression of Purkinje

cells in the association cerebellum when considering more

bins (Figure S6), our results only suggest that genes associated

with Purkinje cells, as defined by the chosen cell-type set

(DropViz36), show differences in expression between the senso-

rimotor and association areas of the cerebellum. Purkinje cells

are the sole source of output from the human cerebellum, and

the most well-studied zebrin regions defined by the two sub-

types of Purkinje cells in animal models separately correspond

to motor and non-motor functions.22 Therefore, the significantly

different expression of Purkinje cells now observed between the

sensorimotor and associative cerebellum is likely related to the

formation of the human cerebellar SA axis. The molecular varia-

tion within cerebellar cell type was more continuous rather than

discrete,21 so if future techniques can define the finer cell types

of the human cerebellum more specifically, then they could pro-

vide more detailed answers. Nevertheless, the present results of

the optimal combination of current databases and methods

remind us that the Purkinje cells are involved in the organization

of the cerebellar SA axis and suggest that the cellular architec-

ture is not strictly homogeneous if the cells are subtyped, espe-

cially with respect to the zebrin differentiated subtypes of Pur-

kinje cells.70

In addition to the general summary these results provide, it

may also be very interesting to carefully dig into the detailed bio-

logical principles that correlate specifically with the SA axis and

thusmight support it. Some of thesemicroscopic biological prin-

ciples have been studied on multiple scales and found to have

relatively direct relationships with cerebellar function and

dysfunction in diseases, including involvements in neurotrans-

missions,71 ribosomes,39 and dendritic shafts.40 For example,
10 Cell Reports 43, 113770, February 27, 2024
more neurotransmission processes are expressed higher in the

association cerebellum than in the sensorimotor cerebellum,

which might explain how the association cerebellum has a char-

acteristic diverse functional profile71 and, further, why the asso-

ciation cerebellum is correlated with many neuropsychiatric dis-

orders, which are characterized by cognitive and emotional

impairments as well as dysfunction in neurotransmission.58–60

Besides, there is a large proportion of processes whose links

to cerebellar functional organization (e.g., fat cell proliferation)

remain unclear and require continued future exploration.

To address the question of how the cerebellar SA axis is

formed, in addition to the intrinsic microstructural features we

discussed above, another contribution that cannot be ignored

and has been widely studied is the connection to the cerebral

cortex.1 Although extra-cerebellar connections have been impli-

cated in the functional differentiation of the human cere-

bellum,1,10 it is unclear whether the cerebellar SA axis is formed

through a mirrored projection of the cerebral cortical SA axis.

When we projected the gene-SA relationship of the human cer-

ebellum, i.e., the GCIsig of the cerebellar SA axis, to the cerebral

cortex, we found that the distribution of this projection (CHRISsig)

mirrors the SA axis along the cerebral cortex.4 In addition, the

significant cerebral cortical locations, i.e., CHRISsig
� and

CHRISsig
+, which are, respectively, genetically similar to those

of the sensorimotor and association areas of the cerebellum,

also have distinct significant FC with the cerebellum. These find-

ings demonstrate that the interaction between the cerebellum

and cerebral cortex might be involved in the formation of the

cerebellar SA axis7 and provide evidence for a new perspective

on the unifying SA axis of the whole brain4 and especially for the

gradient correspondence between the cerebral cortex and

cerebellum.10

In summary, our results probed the biological basis of cere-

bellar SA axis formation at two levels, including the intrinsic

microscopic characterization of molecular, cellular, and pathway

variations along the cerebellar SA axis, as well as the cerebral

cortical interaction to the cerebellum at both the genetic and

functional levels. The genetic and functional cerebello-cerebral

interactions evaluated based on these intrinsic microscopic var-

iations, respectively, mirror the SA axis of the human cerebral

cortex and the cerebellum. Therefore, they are not mutually

exclusive but complementary in the formation of the cerebellar

SA axis, which keeps consistent with the recent evidence that

challenges the notion that the hierarchical structure of the human

cerebellum is solely driven by cerebral cortex signals.

Convergence of development- and evolution-conferred
psychiatric susceptibility in the association cerebellum
Decoding how the cerebellar SA axis is formed may yield deep

insights into the vital roles of the cerebellum, such as in neuro-

psychiatric dysregulation and evolution. The rare perspective

of variation along one axis represented by the FG offers a spring-

board for synthesizing multi-level findings into a general charac-

terization of cerebellar function. Along the cerebellar SA axis, the

sensorimotor cerebellum, which ismainly connected to the cere-

bral cortical motor regions and plays a role in motor function,72

exhibits a relatively high expression of Purkinje neurons, is en-

riched in multiple levels of fundamental biological processes,
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and engages in many cerebellum-linked neurological disorders.

In contrast, the association cerebellum, which is primarily con-

nected to the association regions of the cerebral cortex and in

charge of the non-motor functions such as emotion and cogni-

tion,72 is enriched in many neurotransmission processes, un-

dergoes delayed maturation,61 is involved in many psychiatric

disorders, and has rapidly expanded in recent human evolu-

tion.66 Furthermore, the present findings with respect to neuro-

psychiatric disorders, neurodevelopment, and human evolution

are mutually supportive and thus hint at the convergence of

susceptibility to psychiatric symptoms conveyed by both neuro-

development and recent rapid evolution in the association

cerebellum.

The spatio-molecular profiles underlying the cerebellar SA axis

derived from healthy subjects is significantly correlated with

gene dysfunction in patients with SCZ, MDD, BD, and ASD.

This finding resonated with the accumulated knowledge about

the crucial role of the human cerebellum across psychiatric dis-

orders and common underlying genetic risk sharing between

these heritable psychiatric disorders.48 Moreover, the engage-

ment of GCIsig in these psychiatric disorders ismuchmore signif-

icant in the association cerebellum than in the sensorimotor cer-

ebellum. Because these psychiatric disorders all involve

dysregulation of emotional cognition in terms of symptoms and

neurotransmission in terms of pathogenesis,59,60 this is not

only in harmony with the functional hierarchical nature along

the cerebellar SA axis but is also consistent with the higher

enrichment of neurotransmission in the association cerebellum.

Several neurological disorders involving the sensorimotor cere-

bellum, such as ALS,73,74 also manifest some psychological

symptoms. Although there is a growing body of research on

the cerebellum across brain disorders, the actual mechanisms

are unclear.47,75 The present results remind us that the sensori-

motor and association areas of the cerebellum may not be

strictly distinguished as, respectively, involved in neurological

and psychiatric disorders but rather exhibit symptomatic

changes along the SA axis, from the sensorimotor cerebellum

to the association cerebellum, with more psychiatric symptoms

that affect emotional or/and cognitive functions being involved.

That is, along the cerebellar SA axis, there is increased suscep-

tibility to psychiatric symptoms.4

On the one hand, in the cerebral cortex, the SA axis can be

viewed as both a dominant spatial feature axis and a primary

neurodevelopmental axis, implying that the variability of the

spatial features may be partially derived from the variability of

the development.4 The developmental critical period pro-

gressed sequentially along the cerebral cortical SA axis. In a

bifurcated manner, the sensorimotor cortex is refined in child-

hood, whereas the association cortex continues to mature

throughout adolescence.62 This is consistent with our transcrip-

tomic-derived developmental findings that the postnatal cluster

of GCIsig is enriched in neurotransmission and aligns with

increased psychiatric susceptibility in the association cere-

bellum. The association cerebellum is characterized by pro-

longed development,61 and increased neurotransmission facili-

tates its continued plasticity.76 One of its manifestations is that

transmodal association regions remain comparatively immature

throughout childhood and adolescence,4,62 and thus the same
damage in these time periods leads to more profound psychiat-

ric symptoms.77 For example, the high-risk time window for

MDD is between the ages of 18 and 2978 and for ASD is from

infancy to childhood.79 These findings suggest that the long-

term plasticity within the later-maturing association cerebellum,

which is involved in neurotransmission, conveys a psychiatric

risk similar to that of the cerebral cortex.4 More detailed,

8-cluster results indicate that gene sets with different functions

exhibit temporal variation in their activity during the develop-

ment process (fetal to adult). As such, it appears that, in the

same way as the cerebral cortex, the hierarchical development

along the SA axis is driven by a cascade of critical pe-

riods.62,80,81 Future detailed developmental gene datasets

within the human cerebellum would provide more inspiration.

On the other hand, from an evolutionary perspective, we found

that the GCIsig was positively selected during evolution from

chimpanzee to human and linked to the HARs. This supports

the idea that the cerebellar SA axis and its spatio-molecular pro-

files have played a crucial role in human evolution, especially the

presence of unique human higher-order functions in recent evo-

lution. This is consistent with the extreme selective expansion of

the human association cerebellum.24,66 Moreover, many posi-

tively selected genes are related to neuropsychiatric disorders,

a finding that is consistent with the significant correlation be-

tween GCI and psychiatric genetic dysregulation. Taking the

top dN/dS gene as an example, the PSORS1C2 gene as well

as SMPDL3A were found to be linked with depression and

SCZ82 by regulating sphingomyelin metabolism.83 This result

supports present findings of the close relationship between

GCIsig and neuropsychiatric disorders and may also help in un-

derstanding why evolutionary changes are specific to the asso-

ciation cerebellum.66 Furthermore, the hypothesis that increased

susceptibility to mental illness may have accompanied the evo-

lution of higher-order functions in the cerebral cortex is again

implied at the cerebellum level.84

In summary, along the cerebellar SA axis, there is increasing

neurotransmission involvement, later maturation, more involve-

ment in evolution, and increased susceptibility to psychiatric

symptoms. Because a combination of these with a close rela-

tionship between features derived from the cerebral cortex,4

such as the protracted maturation of the association cortex,

could significantly distinguish humans from other primates,85

we infer that neurodevelopmental and evolutionary concomi-

tant psychiatric susceptibility converges at the association

cerebellum.

Limitations of the study
Several methodological limitations need to be noted when inter-

preting our findings, and these limitations suggest important av-

enues for future research. First, we could not replicate our results

using an external gene dataset because there is currently no

publicly accessible dataset that is comparable to AHBA, which

provides a comprehensive sampling of the human cerebellum.30

We have tried to address this problem by regressing donor ef-

fects in the genetic data preprocessing step and performing a

leave-one-out donor analysis. Second, when we tried to use

GSVA to obtain a significant gene set along the SA axis, we

divided the SA axis into the sensorimotor and association areas
Cell Reports 43, 113770, February 27, 2024 11
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of the cerebellum. However, there are other functional variants

between these two termini. So, while this is also why this work

can provide a fresh perspective, there should still be more en-

hancements and more detailed discussions in the future. Third,

although current work overcomes one of the issues of imaging

transcriptomics by introducing GSVA, it is still very challenging

to make causal inferences.

In short, more detailed cerebellar genetic datasets and more

advanced methods are necessary to answer deeper questions

in a causal rather than a correlational manner. Nevertheless,

given the current limited understanding of howmicroscale genes

contribute to cerebellar functional diversity, this study presents

fresh insights into the genetic, molecular, cellular, and pathway

variations and cerebello-cerebral interactions that appear to

scaffold the human cerebellar SA axis. This fresh perspective

is attributable to our introduction of GSVA into imaging transcrip-

tomics and analysis along the continuous SA axis. Such an anal-

ysis is not available for discrete functional networks or with tradi-

tional imaging-transcriptomics techniques.30 So, while there are

several limitations in the dataset and methodology of the current

work, this methodological advancement can still provide valu-

able results.
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METHOD DETAILS

Experimental design
The schematic of the experimental design that addressed three progressive questions is depicted in Figure 1. Question 1 (Figure 1A):

Could the sensorimotor-association axis (SA axis) of the adult human cerebellum extracted from the functional gradient (FG) be

significantly predicted by gene expression? We leveraged the partial least-squares regression (PLSR) to predict the FG using sam-

ple-wise transcriptome gene expression. Question 2 (Figure 1B): What intermediate biological principles mediate this SA axis, and is

there a link between evolution and neuropsychiatric diseases of the cerebellum and these spatio-molecular profiles? Gene set vari-

ation analysis (GSVA), an ex vivo psychiatric gene dysregulation dataset, a developmental transcriptome dataset, and the evolution

rate of genes were introduced to the significant gene expression along the SA axis to explore this question. Question 3 (Figure 1C):

What is the involvement of the cerebral cortex in the cerebellar SA axis at the genetic and functional connectivity (FC) levels? The

correlation between the regression coefficient of significant genes and the gene expression of cerebral cortical samples, as well

as of the FC between significantly engaged cerebral cortical samples and the cerebellum, were examined.

The FG of the human cerebellum
The minimally preprocessed91,92 Human Connectome Project (HCP) S1200 release dataset,93 which has 1,018 subjects (aged from

22 to 37 years old) with both structural MRI and resting-state functional MRI (rs-fMRI) data, was leveraged to get a 2 mm voxel-wise,

group-averaged, preprocessed dense connectome that includes correlation values for each cerebellar voxel with the extra-cere-

bellar voxels. It provides a spatial distribution of FCs for each cerebellar voxel with extra-cerebellar voxels (a connectivity profile).

Then, an affinity matrix was created using the cosine distance to determine the consistency between pairs of voxels, indicating

the similarity of their connection patterns. To ensure that only the strong, potentially less noisy connections contribute to the later

manifold solution,94 the affinity matrix was thresholded at the 90th percentile to transform it into a sparse affinity matrix.7 Last, a

nonlinear dimensionality reduction technique, i.e., diffusion map embedding,95 was leveraged to recover a low-dimensional embed-

ding from the high-dimensional sparse affinity matrix. The diffusion map embedding results in the first component (or first gradient,

primary gradient), which reflects as much of the variance of the data as possible.67 Under this constraint, all the subsequent com-

ponents are orthogonal and designed to account for the highest possible variability. Noteworthy is that the first gradient explains

the greatest amount of variance in the cerebello-exracerebellar functional connectivity (Figure S1B). We focused on the first gradient,

and thus the FG of the current analysis is referred to as the first gradient. The results were visualized as cerebellar flat maps using the

SUIT toolbox.88

For a quantitative demonstration of the primary assumption that FG reflects an SA axis, we conducted two analyses to explore the

relationship between cerebellar FG with task activation (Figure S1C) and cerebral cortical connectivity (Figure 2A, right). For the task

activation, we tried to give a quantitative demonstration using another modality, i.e., task-based fMRI. We assigned the cerebellar

voxels to the independent task-based MDTB functional parcellation32 and calculated the mean, median, and range of the FG values

for the voxels within each MDTB ROI activated during different tasks. For the cerebral cortical connectivity, we generated 100 ROIs

along the cerebellar FG. Firstly, we sorted the voxels by the FG value and divided them into 100 ROIs. Then, we calculated the func-

tional connectivity (FC) between these 100 cerebellum ROIs and the cerebral cortex. The rs-fMRI of 100 unrelated subjects (U100)

was obtained from the minimally preprocessed91,92 HCP S1200 release dataset.93 Then, we could evaluate the Fisher z transformed

correlation between these 100 ROIs with the cerebral cortex across 100 subjects. These correlations for all 100 subjects were com-

bined to calculate the t score value for every cerebral cortex voxel. The binarized maps of significantly functionally connected cere-

bral cortex regions were generated using voxel-wise family-wise error corrected by Bonferroni p < .001. The significant FC between

these 100 cerebellar FG-sorted ROIs with cerebral cortex was quantified at the 7-network level of a cerebral cortical functional net-

works atlas,96 and the networks were sorted by the cerebral cortical SA axis.67

Human transcriptome data
The Allen Human Brain Atlas (AHBA)28 dataset, available to the public at http://www.brain-map.org, offers normalized microarray

gene expression information from six adult donors (ages 24, 31, 34, 49, 55, and 57 years; n = 4, left hemisphere only; n = 2, both

left and right hemispheres). Demographic details are listed in Table S1. The Institutional Review Boards of the Maryland Department

of Health and Hygiene, the University of Maryland Baltimore, and the University of California Irvine approved the collection of tissue

samples. Informed consent was obtained from the next-of-kin of the deceased individuals.28 Although AHBA provides gene expres-

sion from only six adult donors, it still has many unprecedented advantages. While some existing human gene expression atlases

cover multiple brain regions, only the AHBA delivers high-resolution coverage of nearly the entire brain.25 It includes the expression

of more than 20,000 genes taken from 3,702 spatially distinct tissue samples28 ranging from the cerebral cortex to the cerebellum.

As utilized in Markello et al.,86 the pre-processing pipeline included probe-to-gene re-annotations and sample selection using an

intensity-based filtering of probes at a threshold of 0.5. It also included the removal of samples that had an inconsistent hemisphere

annotation or MNI coordinates (hemisphere = = ‘‘L’’ & mni_x > 0 | hemisphere = = ‘‘R’’ & mni_x < 0). Probe selection included using

differential stability for the data from all donors. Gene normalization was done using a scaled robust sigmoid transform.25 The rest of

the parameters were left at their default settings. This preprocessing was achieved by using the get_samples_in_mask function of the
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abagen toolbox86 with no mask input. The output of the pre-processing pipeline included a gene-by-sample expression matrix with

15,624 genes and 3604 samples across all donors combined with the sample annotation matrix.

We obtained the 337 samples belonging to the cerebellar cortex based on the slab_type equal to "CB" (cerebellum) function and

removed the cerebellar nucleus by filtering out the samples whose structure name contained the keyword "nucleus," based on the

sample annotation matrix given by abagen. Although the corrected sample coordinates after manually updating the non-linear dif-

feomorphic registration of all the donors were used as suggested by abagen,86 many issues specific to the alignment of the cere-

bellum were still not taken into account, not to mention that the scan of donor 15697 showed a deformed cerebellum. Therefore,

we re-ran the preprocessing of the six donor T1 images using the SUIT toolbox to obtain more accurate coordinates, which were

optimized for the cerebellum of the 337 cerebellar samples. Thismethod preserved the anatomical details of the cerebellar structures

by a nonlinear alignment algorithm to ameliorate possible phenomena resulting from improved lacunar superposition, spatial varia-

tion, and overlap of the deep cerebellar nuclei. The main steps of this preprocessing included alignment, segmentation, and

deformation.97

Then we assigned an FG value to each of the 337 cerebellar samples by averaging the FG values of voxels less than 4 mm away

from the corrected sample SUIT coordinates. It is worth pointing out that the scale of the FG is arbitrary, we normalized the FG to the

range from 0 to 1 to reduce the unwanted effect of adding positive and negative values when we averaged the FG of voxels less than

4 mm away (the original values of the FG are shown in Figure S1). For the samples with FG values equal to 0, we also manually

removed those that were not on the cerebellum based on their visible location, resulting in 317 cerebellar samples.

Prediction of FG using the transcriptome
Based on the pre-processed 15624 genes3 317 cerebellar samples gene expression matrix, we leveraged the partial least-squares

regression (PLSR) model to predict the human cerebellar SA axis, which is well established by FG. The optimal component number

from the PLSR was validated by a 100 times nested 10-fold cross-validation (CV). In brief, in the initial 10-fold CV, the samples were

randomly split into 9-fold for training and 1-fold for testing. Then the 9-fold training samples underwent a nested 10-fold CV for which

the mean square error (mse) was obtained for a component number ranging from 1 to 10 to derive the optimal component number

within the initial 9-fold training samples. Next, the optimal component number within the initial 9-fold training samples was used to

test the correlation between the observed FG and the predicted FG of the initial 1-fold training samples. We repeated this nested

10-fold CV 100 times to obtain the optimal component number (Figure S2).

To test model generalizability, we repeated a 10-fold CV strategy 101 times (since data division could influence performance and

an odd number of repeats was chosen to enable straightforward identification of the the median model). The correlation coefficients

(r) between the predicted and actual FG were calculated, and the median of the r values across the 101 repetitions was referred to as

the prediction performance. To test the significance of the prediction performance while considering the spatial autocorrelation, we

leveraged Brain Surrogate Maps with Autocorrelated Spatial Heterogeneity (BrainSMASH)87 to generate 10,000 surrogate FGmaps,

which retained the spatial autocorrelation of the voxel-level FG map. These 10,000 surrogate FG maps were used to assign the sur-

rogate FG value to the 317 cerebellar samples. Then we re-ran the PLSR model with the same split strategy, thus generating an

empirical null distribution of the prediction performance while considering the spatial autocorrelation. The p value that controlled

the spatial auto-correlation (psa) was defined as the proportion of correlation values produced by the surrogate maps that exceeded

the correlation coefficient for the actual data. Second, we performed a leave-one-donor-out CV to seewhether amodel trained on the

samples of five donors could predict the sample-wise FG of the sixth donor (Figure S3). Note that the number of samples varied

considerably across donors. The final model used for all the subsequent analyses utilized all the samples.

The regression coefficient of each gene in the PLSRmodel represented the degree of contribution of each gene to the prediction of

the FG. Thus, the regression coefficient could act as the gene contribution indicator (GCI). To test the significance of the GCI and

identify the significant genes, a permutation of BrainSMASH, which preserves the spatial auto-correlation of the FG, was also

used to construct the null distribution of GCI for each gene, and the psa for each gene was defined as the proportion of the absolute

value of GCI from the null distribution that exceeded the absolute value of the true GCI. Then the psa of GCI was adjusted by Bon-

ferroni correction (smaller than .05 divided by 15624 was considered significant), and the set of the genes with a significant GCI was

referred to as GCIsig for simplicity and fluency.

Gene set variation analysis (GSVA)
The GSVA31 provides more power for assaying subtle alterations in biological activity over a sample population than gained by using

only the correlated genes. It thuswas introduced as an attempt to copewith the conventional limits of imaging-transcriptome studies.

We mainly included three steps in the current study. First, bioinformatics datasets, including gene ontology (GO),33,34 Kyoto Ency-

clopedia of Genes andGenomes (KEGG),35 and cerebellar cell types data fromDropViz,36 were utilized to group genes into gene sets

based on their biological functions. Then the genes3 samples expressionmatrix was transformed into a genesets3 samples enrich-

ment score matrix based on the kernel estimation of the cumulative density function to show the variation in the gene set along with

the samples. Last, differential analysis98 was leveraged to obtain significantly expressed functional gene sets between different sam-

ple types.

Specifically, the 317 samples were reordered based on their FG value and then divided into 20 bins, with the gene expression and

FG averaged for each bin. The reasons for the bin-based analysis include that the GSVA algorithm’s strategy of requiring a sample
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size greater than 10 and larger than 60 does not increase the statistical power but increases empirical type-I errors. And earlier

research confirmed that a bin-based correlation analysis could improve statistical power and lower noise.51,67,99 Alternative numbers

of bins (30, 40, 50, and 60, Figures S4, S5, S6, and S7) were also applied to test the stability across choices of bin numbers. Taking

20-bin as an example, GSVA transformed the GCIsig 3 20 bins gene expression matrix into a genesets 3 20 bins enrichment score

matrix. Then, a differential analysis was utilized to obtain the significantly expressed gene sets between the sensorimotor and asso-

ciation samples. A fold change >1 and p < .05 (FDR corrected) was used as an indicator to threshold the significant gene set. Whether

the sample belongs to the association or sensorimotor region was determined based on whether the FG after averaging was greater

than 0.5 or not. This binary category was only used as an approximate indicator of the characteristics of the two ends of the SA axis.4

The significant gene set expression along the SA axis was visualized by ComplexHeatmap89 for the sample hierarchical clustering

method with default settings. To facilitate visualization, for some categories with a greater number of results, such as GO, we only

showed the top 20 in the heatmap (full results can be found in Datas S2, S3, S4, S5, S6, S7, S8, and S9).

Relationships with neuropsychiatric disorders
To determine the role of GCIsig in disease, we utilized two different strategies. In the first strategy, we adopted the statistical abilities of

GSVA, i.e., to mine out subtle changes in the samples, to see the changes in disease along the cerebellar SA axis by replacing the

dataset with a disease gene network (DisGeNET).49 TheDisGeNET dataset is one of the richest andmost publicly accessible biomed-

ical resources. It includes a broad range of disease phenotypes associated with human genomics: actual diseases, disease symp-

toms, and abnormal phenotypes that are observed as disease manifestations, as well as normal traits and phenotypes that are

currently explored in large-scale Genome-Wide Association Studies.49 The validation of the different bins was the same as before

(Figure S7).

Another strategy, i.e., ex vivo psychiatric gene dysfunction, was used as a focus to investigate the relationship between GCI and

psychiatric disorders. The ex vivo psychiatric gene dysfunction was obtained from Gandal et al.56 (https://github.com/mgandal/

Shared-molecular-neuropathology-across-major-psychiatric-disorders-parallels-polygenic-overlap) and provided differential gene

expression information across fivemajor psychiatric disorders, i.e., major depression (MDD), bipolar disorder (BD), autistic spectrum

disorder (ASD), schizophrenia (SCZ), and alcohol abuse disorder (AAD), compared with matched controls. The log2 fold change

(log2 FC) was obtained from a linear mixed-effects model and represents the extent to which a gene is up or down-regulated in

each psychiatric population.56 As found by Anderson et al.51 and Liu et al.,99 the log2 FC values of most genes were distributed

around zero. Thus, a gene-wise transcriptional correlation analysis with log2 FC could cause bias in estimating the correlation due

to noise, so a bin-based correlation analysis was further applied. Specifically, the overlapped genes were reordered based on their

GCI value and then divided into 40 bins, with GCI and log2 FC averaged for each bin. Then the correlation between the GCI underlying

the in vivoSA axis and the ex vivo log2 FC for each psychiatric disorder was examined. Alternative number of bins (20, 60, 80, and 100)

were also applied to test the stability across choices of bin numbers (Figure S8).

Developmental clustering and evolution rate
To investigate the overall developmental features of GCIsig, we utilized the BrainSpan100 dataset, which provides gene expression

along the lifespan (42 donors, ages 8 post-conception weeks to 40 years). Because it contains 524 samples covering the whole brain,

we only focused on the 34 cerebellar samples, and multiple samples for the same age were averaged. After removing the duplicates,

891 genes were found to overlap between BrainSpan and AHBAGCIsig, and an 891 genes3 28 agesmatrix was used for a clustering

analysis to explore the overall trajectory. The fuzzy clustering algorithm Mfuzz101 was leveraged because it is good at clustering

based on temporal expression information: since it is common for different classes to overlap in temporal expression data, it is better

to use soft clustering rather than hard clustering.101 The optimal cluster number, i.e., 2, was chosen based on the total within-clusters

sum of squares and the average silhouette method (Figure S9A). Meanwhile, the 8 cluster results are also shown in Figure S9B

because the total within-clusters sum suggests that 8 is another good solution. After the initial clustering, we applied the over-rep-

resentation analysis (ORA) gene enrichment by ClusterProfiler90 to obtain the potential biological explanation, such asGO andKEGG,

for each cluster.

The evolutionary rate of genes63 is a widely used measure to quantify the speed of evolutionary change. It is defined as the ratio

between the rate of its nonsynonymous and its synonymous rates, i.e., dN/dS. A dN/dS < 1 indicates a negative purifying selection

and thus is more conserved, = 1 indicates neutral evolution and no change between two species, whereas >1 indicates positive se-

lection and thus is less conserved.63 Two species, i.e., mouse and chimpanzee, were selected to test the difference in the evolution

rate of GCIsig between mouse-human and chimpanzee-human using the human genome as a reference. Based on BioMart,102 we

first obtained the homologous genes between mice and humans and then calculated the dN/dS values for GCIsig, i.e., their

mouse-human evolutionary rates. We then repeated this procedure for the chimpanzee-human data. Welch’s t test was used to

compare the dN/dS ratio between the mouse-human and chimpanzee-human rates.

Cerebral cortical interaction with GCIsig
To explore how the relationship between GCIsig and the cerebellar SA axis is represented in the cerebral cortex, we first obtained the

cerebral cortical sample-wise gene expression from AHBA. The pre-processing pipeline was consistent with that used for the cer-

ebellum. By this procedure, we derived the pre-processed 15,624 genes 3 1539 samples of the cerebral cortical matrix.
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Then we calculated the correlation between each cerebral cortical gene expression, i.e., 1024 genes 3 1 sample, with the GCI

value of 1024 genes from GCIsig to obtain the correlation with GCIsig for 1539 cerebral cortical samples. And this correlation was

referred to as the Cerebellar Hierarchical Representative Index of Similarity (CHRIS), a value representing the degree to which the

genomic signature of the cerebellar SA axis is represented in the gene expression profile of a cerebral cortical sample.103 The

CHRIS could also indicate the similarity between a given cerebral cortical sample’s gene expression and the gene expression along

the cerebellar SA axis. Thus, a negative CHRIS (CHRIS�) means a higher genetic similarity with the sensorimotor cerebellum, and a

positive CHRIS (CHRIS+) means a higher genetic similarity with the association cerebellum. The significance of CHRIS was evaluated

by Bonferroni correction, whose correlation significance p < (.05/1539) was referred to as significant, and the set of the cerebral

cortical samples with significant CHRIS was named CHRISsig. CHRISsig
� and CHRISsig

+ indicated a more significant similarity

with the sensorimotor and association areas of the cerebellum, respectively. Meanwhile, the distribution of CHRISsig was quantified

at the 7-network level of the cortical functional networks atlas96 to obtain a detailed visualization of CHRISsig across the 7 networks.

Assigning each sample coordinate to the 7-network parcellation enabled us to obtain the sum of the CHRISsig for all the samples

within the same network.

Next, we wanted to investigate whether there is any difference in FC between CHRISsig
� and CHRISsig

+ as they each differentially

genetically correlate with the sensorimotor and association areas of the cerebellum, respectively. The rs-fMRI of 100 unrelated sub-

jects (U100) was obtained from the minimally preprocessed91,92 HCP S1200 release dataset.93 The seeds were defined by the com-

bination of MNI coordinates of the samples identified as CHRISsig
� and CHRISsig

+, respectively, so we had two seeds in total. To

accomplish this, the AHBA was resampled to a 2 mm resolution to calculate the FC using HCP U100. Taking the CHRISsig
+ as an

example, coordinates of 115 samples which belong to the CHRISsig
+ constitute the ROI for CHRISsig

+. Then we could evaluate

the Fisher z transformed correlation between CHRISsig
+ ROI with the cerebellum across 100 subjects. These correlations for all

100 subjects were combined to calculate a t score value for every cerebellar voxel. The voxel-wise family-wise error corrected by

Bonferroni p < .001 was utilized to generate the binarized maps of the significantly functionally connected cerebellar regions to

CHRISsig
� and CHRISsig

+. Finally, the distribution of the significant FC with CHRISsig was quantified at the 7-network level of a cere-

bellar functional networks atlas.72

QUANTIFICATION AND STATISTICAL ANALYSIS

The generalizability of the PLSR model was evaluated using an embedded 10-fold CV, with the correlation between actual and pre-

dicted FG as the prediction performance. The significance of the prediction performance was determined by the BrainSMASH,87

which controlled the spatial auto-correlation (psa). The significance of GCI and CHRIS was determined by psa < .05 after Bonferroni

correction for multiple comparisons. The robustness of GSVA and ex vivo gene dysfunction analysis was evaluated by alternate

numbers of bins. Welch’s t test was used to compare the dN/dS ratio between the mouse-human and chimpanzee-human rates.

For the FC calculation, the voxel-wise family-wise error corrected by Bonferroni p < .001 was utilized to generate the binarized

maps of the significantly functionally connected voxels. Additional details for each analysis are provided in the relevant sections

above.
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