001023470 001__ 1023470
001023470 005__ 20250204113806.0
001023470 0247_ $$2doi$$a10.1016/j.ibmed.2024.100134
001023470 0247_ $$2datacite_doi$$a10.34734/FZJ-2024-01703
001023470 037__ $$aFZJ-2024-01703
001023470 082__ $$a610
001023470 1001_ $$0P:(DE-HGF)0$$aReinhart, Lisa$$b0
001023470 245__ $$aArtificial intelligence in child development monitoring: A systematic review on usage, outcomes and acceptance
001023470 260__ $$aAmsterdam$$bElsevier$$c2024
001023470 3367_ $$2DRIVER$$aarticle
001023470 3367_ $$2DataCite$$aOutput Types/Journal article
001023470 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1708415230_7138
001023470 3367_ $$2BibTeX$$aARTICLE
001023470 3367_ $$2ORCID$$aJOURNAL_ARTICLE
001023470 3367_ $$00$$2EndNote$$aJournal Article
001023470 520__ $$aObjectivesRecent advances in Artificial Intelligence (AI) offer promising opportunities for its use in pediatric healthcare. This is especially true for early identification of developmental problems where timely intervention is essential, but developmental assessments are resource-intensive. AI carries potential as a valuable tool in the early detection of such developmental issues. In this systematic review, we aim to synthesize and evaluate the current literature on AI-usage in monitoring child development, including possible clinical outcomes, and acceptability of such technologies by different stakeholders.Material and methodsThe systematic review is based on a literature search comprising the databases PubMed, Cochrane Library, Scopus, Web of Science, Science Direct, PsycInfo, ACM and Google Scholar (time interval 1996–2022). All articles addressing AI-usage in monitoring child development or describing respective clinical outcomes and opinions were included.ResultsOut of 2814 identified articles, finally 71 were included. 70 reported on AI usage and one study dealt with users’ acceptance of AI. No article reported on potential clinical outcomes of AI applications. Articles showed a peak from 2020 to 2022. The majority of studies were from the US, China and India (n = 45) and mostly used pre-existing datasets such as electronic health records or speech and video recordings. The most used AI methods were support vector machines and deep learning.ConclusionA few well-proven AI applications in developmental monitoring exist. However, the majority has not been evaluated in clinical practice. The subdomains of cognitive, social and language development are particularly well-represented. Another focus is on early detection of autism. Potential clinical outcomes of AI usage and user's acceptance have rarely been considered yet. While the increase of publications in recent years suggests an increasing interest in AI implementation in child development monitoring, future research should focus on clinical practice application and stakeholder's needs.
001023470 536__ $$0G:(DE-HGF)POF4-5255$$a5255 - Neuroethics and Ethics of Information (POF4-525)$$cPOF4-525$$fPOF IV$$x0
001023470 536__ $$0G:(DE-HGF)POF4-5251$$a5251 - Multilevel Brain Organization and Variability (POF4-525)$$cPOF4-525$$fPOF IV$$x1
001023470 588__ $$aDataset connected to CrossRef, Journals: juser.fz-juelich.de
001023470 7001_ $$0P:(DE-HGF)0$$aBischops, Anne C.$$b1$$eCorresponding author
001023470 7001_ $$0P:(DE-HGF)0$$aKerth, Janna-Lina$$b2
001023470 7001_ $$0P:(DE-HGF)0$$aHagemeister, Maurus$$b3
001023470 7001_ $$0P:(DE-Juel1)166268$$aHeinrichs, Bert$$b4$$ufzj
001023470 7001_ $$0P:(DE-Juel1)131678$$aEickhoff, Simon B.$$b5$$ufzj
001023470 7001_ $$0P:(DE-Juel1)177727$$aDukart, Jürgen$$b6$$ufzj
001023470 7001_ $$0P:(DE-Juel1)174172$$aKonrad, Kerstin$$b7$$ufzj
001023470 7001_ $$0P:(DE-HGF)0$$aMayatepek, Ertan$$b8
001023470 7001_ $$0P:(DE-HGF)0$$aMeissner, Thomas$$b9
001023470 773__ $$0PERI:(DE-600)3052480-5$$a10.1016/j.ibmed.2024.100134$$gVol. 9, p. 100134 -$$p100134 -$$tIntelligence-based medicine$$v9$$x2666-5212$$y2024
001023470 8564_ $$uhttps://juser.fz-juelich.de/record/1023470/files/1-s2.0-S2666521224000012-main.pdf$$yOpenAccess
001023470 8564_ $$uhttps://juser.fz-juelich.de/record/1023470/files/1-s2.0-S2666521224000012-main.gif?subformat=icon$$xicon$$yOpenAccess
001023470 8564_ $$uhttps://juser.fz-juelich.de/record/1023470/files/1-s2.0-S2666521224000012-main.jpg?subformat=icon-1440$$xicon-1440$$yOpenAccess
001023470 8564_ $$uhttps://juser.fz-juelich.de/record/1023470/files/1-s2.0-S2666521224000012-main.jpg?subformat=icon-180$$xicon-180$$yOpenAccess
001023470 8564_ $$uhttps://juser.fz-juelich.de/record/1023470/files/1-s2.0-S2666521224000012-main.jpg?subformat=icon-640$$xicon-640$$yOpenAccess
001023470 909CO $$ooai:juser.fz-juelich.de:1023470$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire
001023470 9101_ $$0I:(DE-HGF)0$$6P:(DE-HGF)0$$a Department of General Pediatrics, Neonatology and Pediatric Cardiology, Medical Faculty and University Hospital Duesseldorf, Heinrich-Heine-University, Moorenstr. 5, 40227, Duesseldorf, Germany. AnneChristine.Bischops@med.uni-duesseldorf.de$$b1
001023470 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)166268$$aForschungszentrum Jülich$$b4$$kFZJ
001023470 9101_ $$0I:(DE-HGF)0$$6P:(DE-Juel1)166268$$a Uni Bonn$$b4
001023470 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)131678$$aForschungszentrum Jülich$$b5$$kFZJ
001023470 9101_ $$0I:(DE-HGF)0$$6P:(DE-Juel1)131678$$a HHU Düsseldorf$$b5
001023470 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)177727$$aForschungszentrum Jülich$$b6$$kFZJ
001023470 9101_ $$0I:(DE-HGF)0$$6P:(DE-Juel1)177727$$a HHU Düsseldorf$$b6
001023470 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)174172$$aForschungszentrum Jülich$$b7$$kFZJ
001023470 9131_ $$0G:(DE-HGF)POF4-525$$1G:(DE-HGF)POF4-520$$2G:(DE-HGF)POF4-500$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-5255$$aDE-HGF$$bKey Technologies$$lNatural, Artificial and Cognitive Information Processing$$vDecoding Brain Organization and Dysfunction$$x0
001023470 9131_ $$0G:(DE-HGF)POF4-525$$1G:(DE-HGF)POF4-520$$2G:(DE-HGF)POF4-500$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-5251$$aDE-HGF$$bKey Technologies$$lNatural, Artificial and Cognitive Information Processing$$vDecoding Brain Organization and Dysfunction$$x1
001023470 9141_ $$y2024
001023470 915__ $$0LIC:(DE-HGF)CCBY4$$2HGFVOC$$aCreative Commons Attribution CC BY 4.0
001023470 915__ $$0StatID:(DE-HGF)0501$$2StatID$$aDBCoverage$$bDOAJ Seal$$d2023-04-12T14:51:30Z
001023470 915__ $$0StatID:(DE-HGF)0500$$2StatID$$aDBCoverage$$bDOAJ$$d2023-04-12T14:51:30Z
001023470 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
001023470 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bDOAJ : Anonymous peer review$$d2023-04-12T14:51:30Z
001023470 915__ $$0StatID:(DE-HGF)0561$$2StatID$$aArticle Processing Charges$$d2023-08-22
001023470 915__ $$0StatID:(DE-HGF)0700$$2StatID$$aFees$$d2023-08-22
001023470 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2024-12-10
001023470 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2024-12-10
001023470 9201_ $$0I:(DE-Juel1)INM-7-20090406$$kINM-7$$lGehirn & Verhalten$$x0
001023470 9201_ $$0I:(DE-Juel1)INM-11-20170113$$kINM-11$$lJara-Institut Quantum Information$$x1
001023470 980__ $$ajournal
001023470 980__ $$aVDB
001023470 980__ $$aUNRESTRICTED
001023470 980__ $$aI:(DE-Juel1)INM-7-20090406
001023470 980__ $$aI:(DE-Juel1)INM-11-20170113
001023470 9801_ $$aFullTexts