001023472 001__ 1023472
001023472 005__ 20250204113806.0
001023472 0247_ $$2doi$$a10.46471/gigabyte.113
001023472 0247_ $$2datacite_doi$$a10.34734/FZJ-2024-01705
001023472 037__ $$aFZJ-2024-01705
001023472 1001_ $$0P:(DE-Juel1)184874$$aHamdan, Sami$$b0$$ufzj
001023472 245__ $$aJulearn: an easy-touse library for leakage-free evaluation and inspection of ML models
001023472 260__ $$a[Erscheinungsort nicht ermittelbar]$$bGigaScience Press$$c2024
001023472 3367_ $$2DRIVER$$aarticle
001023472 3367_ $$2DataCite$$aOutput Types/Journal article
001023472 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1734072519_20227
001023472 3367_ $$2BibTeX$$aARTICLE
001023472 3367_ $$2ORCID$$aJOURNAL_ARTICLE
001023472 3367_ $$00$$2EndNote$$aJournal Article
001023472 500__ $$aThis work was partly supported by the Helmholtz-AI project DeGen (ZT-I-PF-5-078), the Helmholtz Portfolio Theme “Supercomputing and Modeling for the Human Brain” the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation), project PA 3634/1-1 and project-ID 431549029–SFB 1451 project B05, the Helmholtz Imaging Platform and eBRAIN Health (HORIZON-INFRA-2021-TECH-01).
001023472 520__ $$aThe fast-paced development of machine learning (ML) and its increasing adoption in research challenge researchers without extensive training in ML. In neuroscience, ML can help understand brain-behavior relationships, diagnose diseases and develop biomarkers using data from sources like magnetic resonance imaging and electroencephalography. Primarily, ML builds models to make accurate predictions on unseen data. Researchers evaluate models' performance and generalizability using techniques such as cross-validation (CV). However, choosing a CV scheme and evaluating an ML pipeline is challenging and, if done improperly, can lead to overestimated results and incorrect interpretations. Here, we created julearn, an open-source Python library allowing researchers to design and evaluate complex ML pipelines without encountering common pitfalls. We present the rationale behind julearn’s design, its core features, and showcase three examples of previously-published research projects. Julearn simplifies the access to ML providing an easy-to-use environment. With its design, unique features, simple interface, and practical documentation, it poses as a useful Python-based library for research projects.
001023472 536__ $$0G:(DE-HGF)POF4-5253$$a5253 - Neuroimaging (POF4-525)$$cPOF4-525$$fPOF IV$$x0
001023472 536__ $$0G:(DE-HGF)POF4-5251$$a5251 - Multilevel Brain Organization and Variability (POF4-525)$$cPOF4-525$$fPOF IV$$x1
001023472 536__ $$0G:(GEPRIS)458640473$$aSFB 1451 B05 - Einzelfallvorhersagen der motorischen Fähigkeiten bei Gesunden und Patienten mit motorischen Störungen (B05) (458640473)$$c458640473$$x2
001023472 588__ $$aDataset connected to CrossRef, Journals: juser.fz-juelich.de
001023472 7001_ $$0P:(DE-Juel1)177823$$aMore, Shammi$$b1
001023472 7001_ $$0P:(DE-Juel1)190306$$aSasse, Leonard$$b2$$ufzj
001023472 7001_ $$0P:(DE-Juel1)187351$$aKomeyer, Vera$$b3$$ufzj
001023472 7001_ $$0P:(DE-Juel1)172843$$aPatil, Kaustubh$$b4$$ufzj
001023472 7001_ $$0P:(DE-Juel1)185083$$aRaimondo, Federico$$b5$$eCorresponding author
001023472 773__ $$0PERI:(DE-600)3072630-X$$a10.46471/gigabyte.113$$gVol. 2024, p. 1 - 16$$p $$tGigaByte$$v $$x2709-4715$$y2024
001023472 8564_ $$uhttps://juser.fz-juelich.de/record/1023472/files/6bj1gFQZ.pdf$$yOpenAccess
001023472 8767_ $$8GB20240005$$92024-02-20$$a1200202393$$d2024-04-08$$eAPC$$jZahlung erfolgt$$z425 USD
001023472 909CO $$ooai:juser.fz-juelich.de:1023472$$pdnbdelivery$$popenCost$$pVDB$$pdriver$$pOpenAPC$$popen_access$$popenaire
001023472 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)184874$$aForschungszentrum Jülich$$b0$$kFZJ
001023472 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)190306$$aForschungszentrum Jülich$$b2$$kFZJ
001023472 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)187351$$aForschungszentrum Jülich$$b3$$kFZJ
001023472 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)172843$$aForschungszentrum Jülich$$b4$$kFZJ
001023472 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)185083$$aForschungszentrum Jülich$$b5$$kFZJ
001023472 9131_ $$0G:(DE-HGF)POF4-525$$1G:(DE-HGF)POF4-520$$2G:(DE-HGF)POF4-500$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-5253$$aDE-HGF$$bKey Technologies$$lNatural, Artificial and Cognitive Information Processing$$vDecoding Brain Organization and Dysfunction$$x0
001023472 9131_ $$0G:(DE-HGF)POF4-525$$1G:(DE-HGF)POF4-520$$2G:(DE-HGF)POF4-500$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-5251$$aDE-HGF$$bKey Technologies$$lNatural, Artificial and Cognitive Information Processing$$vDecoding Brain Organization and Dysfunction$$x1
001023472 9141_ $$y2024
001023472 915pc $$0PC:(DE-HGF)0000$$2APC$$aAPC keys set
001023472 915pc $$0PC:(DE-HGF)0003$$2APC$$aDOAJ Journal
001023472 915__ $$0LIC:(DE-HGF)CCBY4$$2HGFVOC$$aCreative Commons Attribution CC BY 4.0
001023472 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
001023472 915__ $$0StatID:(DE-HGF)0561$$2StatID$$aArticle Processing Charges$$d2023-08-23
001023472 915__ $$0StatID:(DE-HGF)0700$$2StatID$$aFees$$d2023-08-23
001023472 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2024-12-09
001023472 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2024-12-09
001023472 915__ $$0StatID:(DE-HGF)0501$$2StatID$$aDBCoverage$$bDOAJ Seal$$d2024-03-18T08:47:19Z
001023472 915__ $$0StatID:(DE-HGF)0500$$2StatID$$aDBCoverage$$bDOAJ$$d2024-03-18T08:47:19Z
001023472 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bDOAJ : Open peer review$$d2024-03-18T08:47:19Z
001023472 9201_ $$0I:(DE-Juel1)INM-7-20090406$$kINM-7$$lGehirn & Verhalten$$x0
001023472 980__ $$ajournal
001023472 980__ $$aVDB
001023472 980__ $$aUNRESTRICTED
001023472 980__ $$aI:(DE-Juel1)INM-7-20090406
001023472 980__ $$aAPC
001023472 9801_ $$aAPC
001023472 9801_ $$aFullTexts