001023473 001__ 1023473
001023473 005__ 20250204113806.0
001023473 0247_ $$2doi$$a10.1016/j.jcis.2024.02.032
001023473 0247_ $$2ISSN$$a0021-9797
001023473 0247_ $$2ISSN$$a1095-7103
001023473 0247_ $$2datacite_doi$$a10.34734/FZJ-2024-01706
001023473 0247_ $$2pmid$$a38340518
001023473 0247_ $$2WOS$$aWOS:001183974800001
001023473 037__ $$aFZJ-2024-01706
001023473 041__ $$aEnglish
001023473 082__ $$a540
001023473 1001_ $$0P:(DE-HGF)0$$aFarias-Mancilla, Barbara$$b0
001023473 245__ $$aMorphology and thermal transitions of self-assembled NIPAM-DMA copolymers in aqueous media depend on copolymer composition profile
001023473 260__ $$aAmsterdam [u.a.]$$bElsevier$$c2024
001023473 3367_ $$2DRIVER$$aarticle
001023473 3367_ $$2DataCite$$aOutput Types/Journal article
001023473 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1708520182_8381
001023473 3367_ $$2BibTeX$$aARTICLE
001023473 3367_ $$2ORCID$$aJOURNAL_ARTICLE
001023473 3367_ $$00$$2EndNote$$aJournal Article
001023473 520__ $$aHypothesis: There is a lack of understanding of the interplay between the copolymer composition profile and thermal transition observed in aqueous solutions of N-isopropyl acrylamide (NIPAM) copolymers, as well as the correlation between this transition and the formation and structure of copolymer self-assemblies.Experiments: For this purpose, we investigated the response of five copolymers with the same molar mass and chemical composition, but with different composition profile in aqueous solution against temperature. Using complementary analytical techniques, we probed structural properties at different length scales, from the mo-lecular scale with Nuclear Magnetic Resonance (NMR) to the colloidal scale with Dynamic Light Scattering (DLS) and Small Angle Neutron Scattering (SANS).Findings: NMR and SANS investigations strengthen each other and allow a clear picture of the change of copolymer solubility and related copolymer self-assembly as a function of temperature. At the molecular scale, dehydrating NIPAM units drag N,N-dimethyl acrylamide (DMA) moieties with them in a gradual collapse of the copolymer chain; this induces a morphological transition of the self-assemblies from star-like nanostructures to crew-cut micelles. Interestingly, the transition spans a temperature range which depends on the monomer dis-tribution profile in the copolymer chain, with the asymmetric triblock copolymer specimen revealing the broadest one. We show that the broad morphological transitions associated with gradient copolymers can be mimicked and even surpassed by the use of stepwise gradient (asymmetric) copolymers, which can be more easily and reproducibly synthesized than linear gradient copolymers.
001023473 536__ $$0G:(DE-HGF)POF4-6G4$$a6G4 - Jülich Centre for Neutron Research (JCNS) (FZJ) (POF4-6G4)$$cPOF4-6G4$$fPOF IV$$x0
001023473 536__ $$0G:(DE-HGF)POF4-632$$a632 - Materials – Quantum, Complex and Functional Materials (POF4-632)$$cPOF4-632$$fPOF IV$$x1
001023473 588__ $$aDataset connected to CrossRef, Journals: juser.fz-juelich.de
001023473 65027 $$0V:(DE-MLZ)SciArea-210$$2V:(DE-HGF)$$aSoft Condensed Matter$$x0
001023473 65017 $$0V:(DE-MLZ)GC-1602-2016$$2V:(DE-HGF)$$aPolymers, Soft Nano Particles and Proteins$$x0
001023473 693__ $$0EXP:(DE-MLZ)KWS1-20140101$$1EXP:(DE-MLZ)FRMII-20140101$$5EXP:(DE-MLZ)KWS1-20140101$$6EXP:(DE-MLZ)NL3b-20140101$$aForschungs-Neutronenquelle Heinz Maier-Leibnitz $$eKWS-1: Small angle scattering diffractometer$$fNL3b$$x0
001023473 7001_ $$0P:(DE-HGF)0$$aBalestri, Arianna$$b1
001023473 7001_ $$0P:(DE-HGF)0$$aZhang, Junliang$$b2
001023473 7001_ $$0P:(DE-Juel1)130646$$aFrielinghaus, Henrich$$b3$$ufzj
001023473 7001_ $$0P:(DE-HGF)0$$aBerti, Debora$$b4
001023473 7001_ $$0P:(DE-HGF)0$$aMontis, Costanza$$b5
001023473 7001_ $$0P:(DE-HGF)0$$aDestarac, Mathias$$b6
001023473 7001_ $$0P:(DE-HGF)0$$aSchubert, Ulrich S.$$b7
001023473 7001_ $$0P:(DE-HGF)0$$aGuerrero-Sanchez, Carlos$$b8
001023473 7001_ $$0P:(DE-HGF)0$$aHarrisson, Simon$$b9
001023473 7001_ $$0P:(DE-HGF)0$$aLonetti, Barbara$$b10$$eCorresponding author
001023473 773__ $$0PERI:(DE-600)1469021-4$$a10.1016/j.jcis.2024.02.032$$gVol. 662, p. 99 - 108$$p99 - 108$$tJournal of colloid and interface science$$v662$$x0021-9797$$y2024
001023473 8564_ $$uhttps://juser.fz-juelich.de/record/1023473/files/1-s2.0-S0021979724002698-main.pdf$$yOpenAccess
001023473 8564_ $$uhttps://juser.fz-juelich.de/record/1023473/files/203SI.docx$$yRestricted
001023473 8564_ $$uhttps://juser.fz-juelich.de/record/1023473/files/1-s2.0-S0021979724002698-main.gif?subformat=icon$$xicon$$yOpenAccess
001023473 8564_ $$uhttps://juser.fz-juelich.de/record/1023473/files/1-s2.0-S0021979724002698-main.jpg?subformat=icon-1440$$xicon-1440$$yOpenAccess
001023473 8564_ $$uhttps://juser.fz-juelich.de/record/1023473/files/1-s2.0-S0021979724002698-main.jpg?subformat=icon-180$$xicon-180$$yOpenAccess
001023473 8564_ $$uhttps://juser.fz-juelich.de/record/1023473/files/1-s2.0-S0021979724002698-main.jpg?subformat=icon-640$$xicon-640$$yOpenAccess
001023473 909CO $$ooai:juser.fz-juelich.de:1023473$$pdnbdelivery$$pVDB$$pVDB:MLZ$$pdriver$$popen_access$$popenaire
001023473 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)130646$$aForschungszentrum Jülich$$b3$$kFZJ
001023473 9131_ $$0G:(DE-HGF)POF4-6G4$$1G:(DE-HGF)POF4-6G0$$2G:(DE-HGF)POF4-600$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$aDE-HGF$$bForschungsbereich Materie$$lGroßgeräte: Materie$$vJülich Centre for Neutron Research (JCNS) (FZJ)$$x0
001023473 9131_ $$0G:(DE-HGF)POF4-632$$1G:(DE-HGF)POF4-630$$2G:(DE-HGF)POF4-600$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$aDE-HGF$$bForschungsbereich Materie$$lVon Materie zu Materialien und Leben$$vMaterials – Quantum, Complex and Functional Materials$$x1
001023473 9141_ $$y2024
001023473 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2023-10-21
001023473 915__ $$0LIC:(DE-HGF)CCBYNCND4$$2HGFVOC$$aCreative Commons Attribution-NonCommercial-NoDerivs CC BY-NC-ND 4.0
001023473 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2023-10-21
001023473 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
001023473 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2024-12-20
001023473 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2024-12-20
001023473 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2024-12-20
001023473 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences$$d2024-12-20
001023473 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2024-12-20
001023473 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search$$d2024-12-20
001023473 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC$$d2024-12-20
001023473 920__ $$lyes
001023473 9201_ $$0I:(DE-Juel1)JCNS-FRM-II-20110218$$kJCNS-FRM-II$$lJCNS-FRM-II$$x0
001023473 9201_ $$0I:(DE-Juel1)JCNS-4-20201012$$kJCNS-4$$lJCNS-4$$x1
001023473 9201_ $$0I:(DE-588b)4597118-3$$kMLZ$$lHeinz Maier-Leibnitz Zentrum$$x2
001023473 980__ $$ajournal
001023473 980__ $$aVDB
001023473 980__ $$aUNRESTRICTED
001023473 980__ $$aI:(DE-Juel1)JCNS-FRM-II-20110218
001023473 980__ $$aI:(DE-Juel1)JCNS-4-20201012
001023473 980__ $$aI:(DE-588b)4597118-3
001023473 9801_ $$aFullTexts