001     1023520
005     20250204113807.0
024 7 _ |a 10.1002/aesr.202400032
|2 doi
024 7 _ |a 10.34734/FZJ-2024-01731
|2 datacite_doi
024 7 _ |a WOS:001159746500001
|2 WOS
037 _ _ |a FZJ-2024-01731
082 _ _ |a 333.7
100 1 _ |a Shcherbachenko, Sergey
|0 P:(DE-Juel1)188562
|b 0
245 _ _ |a High‐Bandgap Perovskites for Efficient Indoor Light Harvesting
260 _ _ |a Weinheim
|c 2024
|b Wiley-VCH
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1716368398_20545
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a The use of metal-halide perovskites in photovoltaic applications has become increasingly attractive due to their low-temperature manufacturing processes and long charge-carrier lifetimes. High-bandgap perovskite solar cells have potential for indoor applications due to their efficient absorption of the spectrum of light-emitting diodes (LEDs). This study investigates the performance of high-bandgap perovskite solar cells under a wide range of lighting conditions, including a commercially available white LED lamp with a 5–40 000 lx illuminance range and a standard 1 sun reference. The performance of CH3NH3PbI3-based perovskite solar cells to CH3NH3Pb(I0.8,Br0.2)3 solar cells with varying electron transport layers (ETL), including PCBM, PCBM:CMC, and CMC:ICBA fullerene combinations, is compared. Because the spectral response of perovskite solar cells covers the white LED spectrum very well, the major performance difference is related to the open-circuit voltage and fill factor. The cells with the CH3NH3Pb(I0.8,Br0.2)3 absorber layer and the CMC:ICBA ETL demonstrate superior open-circuit voltage and therefore a high efficiency above 29% at 200–500 lx, typical for indoor lighting.
536 _ _ |a 1213 - Cell Design and Development (POF4-121)
|0 G:(DE-HGF)POF4-1213
|c POF4-121
|f POF IV
|x 0
536 _ _ |a SUPERVAL - SUstainable Photo-ElectRochemical VALorization of flue gases (101115456)
|0 G:(EU-Grant)101115456
|c 101115456
|f HORIZON-EIC-2022-PATHFINDERCHALLENGES-01
|x 1
588 _ _ |a Dataset connected to CrossRef, Journals: juser.fz-juelich.de
700 1 _ |a Astakhov, Oleksandr
|0 P:(DE-Juel1)130212
|b 1
700 1 _ |a Liu, Zhifa
|0 P:(DE-Juel1)169264
|b 2
700 1 _ |a Kin, Li-Chung
|0 P:(DE-Juel1)176607
|b 3
700 1 _ |a Zahren, Christoph
|0 P:(DE-Juel1)130308
|b 4
700 1 _ |a Rau, Uwe
|0 P:(DE-Juel1)130285
|b 5
|u fzj
700 1 _ |a Kirchartz, Thomas
|0 P:(DE-Juel1)159457
|b 6
700 1 _ |a Merdzhanova, Tsvetelina
|0 P:(DE-Juel1)130268
|b 7
|e Corresponding author
773 _ _ |a 10.1002/aesr.202400032
|g p. 2400032
|0 PERI:(DE-600)3010017-3
|n 5
|p 2400032
|t Advanced energy & sustainability research
|v 5
|y 2024
|x 2699-9412
856 4 _ |y OpenAccess
|u https://juser.fz-juelich.de/record/1023520/files/Adv%20Energy%20and%20Sustain%20Res%20-%202024%20-%20Shcherbachenko%20-%20High%E2%80%90Bandgap%20Perovskites%20for%20Efficient%20Indoor%20Light%20Harvesting.pdf
856 4 _ |y OpenAccess
|u https://juser.fz-juelich.de/record/1023520/files/Perovskite_paper_4_17.pdf
856 4 _ |y OpenAccess
|x icon
|u https://juser.fz-juelich.de/record/1023520/files/Perovskite_paper_4_17.gif?subformat=icon
856 4 _ |y OpenAccess
|x icon-1440
|u https://juser.fz-juelich.de/record/1023520/files/Perovskite_paper_4_17.jpg?subformat=icon-1440
856 4 _ |y OpenAccess
|x icon-180
|u https://juser.fz-juelich.de/record/1023520/files/Perovskite_paper_4_17.jpg?subformat=icon-180
856 4 _ |y OpenAccess
|x icon-640
|u https://juser.fz-juelich.de/record/1023520/files/Perovskite_paper_4_17.jpg?subformat=icon-640
856 4 _ |y OpenAccess
|x icon
|u https://juser.fz-juelich.de/record/1023520/files/Adv%20Energy%20and%20Sustain%20Res%20-%202024%20-%20Shcherbachenko%20-%20High%E2%80%90Bandgap%20Perovskites%20for%20Efficient%20Indoor%20Light%20Harvesting.gif?subformat=icon
856 4 _ |y OpenAccess
|x icon-1440
|u https://juser.fz-juelich.de/record/1023520/files/Adv%20Energy%20and%20Sustain%20Res%20-%202024%20-%20Shcherbachenko%20-%20High%E2%80%90Bandgap%20Perovskites%20for%20Efficient%20Indoor%20Light%20Harvesting.jpg?subformat=icon-1440
856 4 _ |y OpenAccess
|x icon-180
|u https://juser.fz-juelich.de/record/1023520/files/Adv%20Energy%20and%20Sustain%20Res%20-%202024%20-%20Shcherbachenko%20-%20High%E2%80%90Bandgap%20Perovskites%20for%20Efficient%20Indoor%20Light%20Harvesting.jpg?subformat=icon-180
856 4 _ |y OpenAccess
|x icon-640
|u https://juser.fz-juelich.de/record/1023520/files/Adv%20Energy%20and%20Sustain%20Res%20-%202024%20-%20Shcherbachenko%20-%20High%E2%80%90Bandgap%20Perovskites%20for%20Efficient%20Indoor%20Light%20Harvesting.jpg?subformat=icon-640
909 C O |o oai:juser.fz-juelich.de:1023520
|p openaire
|p open_access
|p OpenAPC
|p driver
|p VDB
|p ec_fundedresources
|p openCost
|p dnbdelivery
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 0
|6 P:(DE-Juel1)188562
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 1
|6 P:(DE-Juel1)130212
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 2
|6 P:(DE-Juel1)169264
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 3
|6 P:(DE-Juel1)176607
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 4
|6 P:(DE-Juel1)130308
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 5
|6 P:(DE-Juel1)130285
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 6
|6 P:(DE-Juel1)159457
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 7
|6 P:(DE-Juel1)130268
913 1 _ |a DE-HGF
|b Forschungsbereich Energie
|l Materialien und Technologien für die Energiewende (MTET)
|1 G:(DE-HGF)POF4-120
|0 G:(DE-HGF)POF4-121
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-100
|4 G:(DE-HGF)POF
|v Photovoltaik und Windenergie
|9 G:(DE-HGF)POF4-1213
|x 0
914 1 _ |y 2024
915 p c |a APC keys set
|2 APC
|0 PC:(DE-HGF)0000
915 p c |a DEAL: Wiley 2019
|2 APC
|0 PC:(DE-HGF)0120
915 p c |a DOAJ Journal
|2 APC
|0 PC:(DE-HGF)0003
915 _ _ |a Creative Commons Attribution CC BY 4.0
|0 LIC:(DE-HGF)CCBY4
|2 HGFVOC
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a Article Processing Charges
|0 StatID:(DE-HGF)0561
|2 StatID
|d 2023-08-28
915 _ _ |a Fees
|0 StatID:(DE-HGF)0700
|2 StatID
|d 2023-08-28
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b ADV ENERG SUST RES : 2022
|d 2024-12-05
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2024-12-05
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0501
|2 StatID
|b DOAJ Seal
|d 2024-08-08T17:09:31Z
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0500
|2 StatID
|b DOAJ
|d 2024-08-08T17:09:31Z
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b DOAJ : Anonymous peer review
|d 2024-08-08T17:09:31Z
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2024-12-05
915 _ _ |a WoS
|0 StatID:(DE-HGF)0112
|2 StatID
|b Emerging Sources Citation Index
|d 2024-12-05
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2024-12-05
915 _ _ |a IF >= 5
|0 StatID:(DE-HGF)9905
|2 StatID
|b ADV ENERG SUST RES : 2022
|d 2024-12-05
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)IEK-5-20101013
|k IEK-5
|l Photovoltaik
|x 0
980 1 _ |a APC
980 1 _ |a FullTexts
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)IEK-5-20101013
980 _ _ |a APC
981 _ _ |a I:(DE-Juel1)IMD-3-20101013


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21