001023670 001__ 1023670 001023670 005__ 20250204113808.0 001023670 0247_ $$2doi$$a10.1177/20539517241235871 001023670 0247_ $$2datacite_doi$$a10.34734/FZJ-2024-01746 001023670 0247_ $$2WOS$$aWOS:001175848600001 001023670 037__ $$aFZJ-2024-01746 001023670 082__ $$a004 001023670 1001_ $$0P:(DE-HGF)0$$aRaz, Aviad$$b0$$eCorresponding author 001023670 245__ $$aPrediction and explainability in AI: Striking a new balance? 001023670 260__ $$aMünchen$$bGBI-Genios Deutsche Wirtschaftsdatenbank GmbH$$c2024 001023670 3367_ $$2DRIVER$$aarticle 001023670 3367_ $$2DataCite$$aOutput Types/Journal article 001023670 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1715066673_19357 001023670 3367_ $$2BibTeX$$aARTICLE 001023670 3367_ $$2ORCID$$aJOURNAL_ARTICLE 001023670 3367_ $$00$$2EndNote$$aJournal Article 001023670 520__ $$aThe debate regarding prediction and explainability in artificial intelligence (AI) centers around the trade-off between achieving high-performance accurate models and the ability to understand and interpret the decisionmaking process of those models. In recent years, this debate has gained significant attention due to the increasing adoption of AI systems in various domains, including healthcare, finance, and criminal justice. While prediction and explainability are desirable goals in principle, the recent spread of high accuracy yet opaque machine learning (ML) algorithms has highlighted the trade-off between the two, marking this debate as an inter-disciplinary, inter-professional arena for negotiating expertise. There is no longer an agreement about what should be the “default” balance of prediction and explainability, with various positions reflecting claims for professional jurisdiction. Overall, there appears to be a growing schism between the regulatory and ethics-based call for explainability as a condition for trustworthy AI, and how it is being designed, assimilated, and negotiated. The impetus for writing this commentary comes from recent suggestions that explainability is overrated, including the argument that explainability is not guaranteed in human healthcare experts either. To shed light on this debate, its premises, and its recent twists, we provide an overview of key arguments representing different frames, focusing on AI in healthcare. 001023670 536__ $$0G:(DE-HGF)POF4-5255$$a5255 - Neuroethics and Ethics of Information (POF4-525)$$cPOF4-525$$fPOF IV$$x0 001023670 588__ $$aDataset connected to DataCite 001023670 7001_ $$0P:(DE-Juel1)166268$$aHeinrichs, Bert$$b1 001023670 7001_ $$0P:(DE-HGF)0$$aAvnoon, Netta$$b2 001023670 7001_ $$0P:(DE-HGF)0$$aEyal, Gil$$b3 001023670 7001_ $$0P:(DE-HGF)0$$aInbar, Yael$$b4 001023670 773__ $$0PERI:(DE-600)2773948-X$$a10.1177/20539517241235871$$gVol. 11, no. 1, p. 20539517241235871$$n1$$p20539517241235871$$tBig data & society$$v11$$x2053-9517$$y2024 001023670 8564_ $$uhttps://juser.fz-juelich.de/record/1023670/files/raz-et-al-2024-prediction-and-explainability-in-ai-striking-a-new-balance.pdf$$yOpenAccess 001023670 8564_ $$uhttps://juser.fz-juelich.de/record/1023670/files/raz-et-al-2024-prediction-and-explainability-in-ai-striking-a-new-balance.gif?subformat=icon$$xicon$$yOpenAccess 001023670 8564_ $$uhttps://juser.fz-juelich.de/record/1023670/files/raz-et-al-2024-prediction-and-explainability-in-ai-striking-a-new-balance.jpg?subformat=icon-1440$$xicon-1440$$yOpenAccess 001023670 8564_ $$uhttps://juser.fz-juelich.de/record/1023670/files/raz-et-al-2024-prediction-and-explainability-in-ai-striking-a-new-balance.jpg?subformat=icon-180$$xicon-180$$yOpenAccess 001023670 8564_ $$uhttps://juser.fz-juelich.de/record/1023670/files/raz-et-al-2024-prediction-and-explainability-in-ai-striking-a-new-balance.jpg?subformat=icon-640$$xicon-640$$yOpenAccess 001023670 909CO $$ooai:juser.fz-juelich.de:1023670$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire 001023670 9101_ $$0I:(DE-HGF)0$$6P:(DE-HGF)0$$a Department of Sociology & Anthropology, Ben-Gurion University of the Negev, Beer-Sheba, Israel https://orcid.org/0000-0001-6268-0409 aviadraz@bgu.ac.il$$b0 001023670 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)166268$$aForschungszentrum Jülich$$b1$$kFZJ 001023670 9131_ $$0G:(DE-HGF)POF4-525$$1G:(DE-HGF)POF4-520$$2G:(DE-HGF)POF4-500$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-5255$$aDE-HGF$$bKey Technologies$$lNatural, Artificial and Cognitive Information Processing$$vDecoding Brain Organization and Dysfunction$$x0 001023670 9141_ $$y2024 001023670 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2023-08-22 001023670 915__ $$0LIC:(DE-HGF)CCBYNCND4$$2HGFVOC$$aCreative Commons Attribution-NonCommercial-NoDerivs CC BY-NC-ND 4.0 001023670 915__ $$0StatID:(DE-HGF)0700$$2StatID$$aFees$$d2023-08-22 001023670 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess 001023670 915__ $$0StatID:(DE-HGF)0561$$2StatID$$aArticle Processing Charges$$d2023-08-22 001023670 915__ $$0StatID:(DE-HGF)0420$$2StatID$$aNationallizenz$$d2025-01-07$$wger 001023670 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bBIG DATA SOC : 2022$$d2025-01-07 001023670 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2025-01-07 001023670 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2025-01-07 001023670 915__ $$0StatID:(DE-HGF)0501$$2StatID$$aDBCoverage$$bDOAJ Seal$$d2024-04-04T14:31:58Z 001023670 915__ $$0StatID:(DE-HGF)0500$$2StatID$$aDBCoverage$$bDOAJ$$d2024-04-04T14:31:58Z 001023670 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bDOAJ : Double anonymous peer review$$d2024-04-04T14:31:58Z 001023670 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2025-01-07 001023670 915__ $$0StatID:(DE-HGF)1180$$2StatID$$aDBCoverage$$bCurrent Contents - Social and Behavioral Sciences$$d2025-01-07 001023670 915__ $$0StatID:(DE-HGF)0130$$2StatID$$aDBCoverage$$bSocial Sciences Citation Index$$d2025-01-07 001023670 915__ $$0StatID:(DE-HGF)9905$$2StatID$$aIF >= 5$$bBIG DATA SOC : 2022$$d2025-01-07 001023670 9201_ $$0I:(DE-Juel1)INM-7-20090406$$kINM-7$$lGehirn & Verhalten$$x0 001023670 980__ $$ajournal 001023670 980__ $$aVDB 001023670 980__ $$aUNRESTRICTED 001023670 980__ $$aI:(DE-Juel1)INM-7-20090406 001023670 9801_ $$aFullTexts