001023691 001__ 1023691
001023691 005__ 20250204113808.0
001023691 0247_ $$2doi$$a10.1016/j.plaphy.2024.108466
001023691 0247_ $$2ISSN$$a0981-9428
001023691 0247_ $$2ISSN$$a1873-2690
001023691 0247_ $$2datacite_doi$$a10.34734/FZJ-2024-01755
001023691 0247_ $$2pmid$$a38428158
001023691 0247_ $$2WOS$$aWOS:001207486700001
001023691 037__ $$aFZJ-2024-01755
001023691 041__ $$aEnglish
001023691 082__ $$a580
001023691 1001_ $$00000-0002-1388-1762$$aZsigmond, Laura$$b0$$eCorresponding author
001023691 245__ $$aMitochondrial complex I subunit NDUFS8.2 modulates responses to stresses associated with reduced water availability
001023691 260__ $$aAmsterdam [u.a.]$$bElsevier Science$$c2024
001023691 3367_ $$2DRIVER$$aarticle
001023691 3367_ $$2DataCite$$aOutput Types/Journal article
001023691 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1710427609_30639
001023691 3367_ $$2BibTeX$$aARTICLE
001023691 3367_ $$2ORCID$$aJOURNAL_ARTICLE
001023691 3367_ $$00$$2EndNote$$aJournal Article
001023691 520__ $$aMitochondria are important sources of energy in plants and are implicated in coordination of a number of metabolic and physiological processes including stabilization of redox balance, synthesis and turnover of a number of metabolites, and control of programmed cell death. Mitochondrial electron transport chain (mETC) is the backbone of the energy producing process which can influence other processes as well. Accumulating evidence suggests that mETC can affect responses to environmental stimuli and modulate tolerance to extreme conditions such as drought or salinity. Screening for stress responses of 13 Arabidopsis mitochondria-related T- DNA insertion mutants, we identified ndufs8.2-1 which has an increased ability to withstand osmotic and oxidative stresses compared to wild type plants. Insertion in ndufs8.2-1 disrupted the gene that encodes the NADH dehydrogenase [ubiquinone] fragment S subunit 8 (NDUFS8) a component of Complex I of mETC. ndufs8.2-1 tolerated reduced water availability, retained photosynthetic activity and recovered from severe water stress with higher efficiency compared to wild type plants. Several mitochondrial functions were altered in the mutant including oxygen consumption, ROS production, ATP and ADP content as well as activities of genes encoding alternative oxidase 1A (AOX1A) and various alternative NAD(P)H dehydrogenases (ND). Our results suggest that in the absence of NDUFS8.2 stress-induced ROS generation is restrained leading to reduced oxidative damage and improved tolerance to water deficiency. mETC components can be implicated in redox and energy homeostasis and modulate responses to stresses associated with reduced water availability.
001023691 536__ $$0G:(DE-HGF)POF4-2171$$a2171 - Biological and environmental resources for sustainable use (POF4-217)$$cPOF4-217$$fPOF IV$$x0
001023691 536__ $$0G:(EU-Grant)284443$$aEPPN - European Plant Phenotyping Network (284443)$$c284443$$fFP7-INFRASTRUCTURES-2011-1$$x1
001023691 588__ $$aDataset connected to CrossRef, Journals: juser.fz-juelich.de
001023691 7001_ $$0P:(DE-HGF)0$$aJuhász-Erdélyi, Annabella$$b1
001023691 7001_ $$00000-0002-1881-2547$$aValkai, Ildikó$$b2
001023691 7001_ $$00000-0002-4597-535X$$aAleksza, Dávid$$b3
001023691 7001_ $$0P:(DE-HGF)0$$aRigó, Gábor$$b4
001023691 7001_ $$0P:(DE-HGF)0$$aKant, Kamal$$b5
001023691 7001_ $$00000-0003-3043-4857$$aSzepesi, Ágnes$$b6
001023691 7001_ $$0P:(DE-Juel1)143649$$aFiorani, Fabio$$b7$$ufzj
001023691 7001_ $$0P:(DE-HGF)0$$aKörber, Niklas$$b8
001023691 7001_ $$0P:(DE-HGF)0$$aKovács, László$$b9
001023691 7001_ $$0P:(DE-HGF)0$$aSzabados, László$$b10
001023691 773__ $$0PERI:(DE-600)2031431-0$$a10.1016/j.plaphy.2024.108466$$gp. 108466 -$$p108466$$tPlant physiology and biochemistry$$v208$$x0981-9428$$y2024
001023691 8564_ $$uhttps://juser.fz-juelich.de/record/1023691/files/1-s2.0-S0981942824001347-main-1.pdf$$yOpenAccess
001023691 8564_ $$uhttps://juser.fz-juelich.de/record/1023691/files/1-s2.0-S0981942824001347-main-1.gif?subformat=icon$$xicon$$yOpenAccess
001023691 8564_ $$uhttps://juser.fz-juelich.de/record/1023691/files/1-s2.0-S0981942824001347-main-1.jpg?subformat=icon-1440$$xicon-1440$$yOpenAccess
001023691 8564_ $$uhttps://juser.fz-juelich.de/record/1023691/files/1-s2.0-S0981942824001347-main-1.jpg?subformat=icon-180$$xicon-180$$yOpenAccess
001023691 8564_ $$uhttps://juser.fz-juelich.de/record/1023691/files/1-s2.0-S0981942824001347-main-1.jpg?subformat=icon-640$$xicon-640$$yOpenAccess
001023691 909CO $$ooai:juser.fz-juelich.de:1023691$$pdnbdelivery$$pec_fundedresources$$pVDB$$pdriver$$popen_access$$popenaire
001023691 9101_ $$0I:(DE-HGF)0$$60000-0002-1388-1762$$a HUN-REN, Szeged, Hungary$$b0
001023691 9101_ $$0I:(DE-HGF)0$$6P:(DE-HGF)0$$a HUN-REN, Szeged, Hungary$$b1
001023691 9101_ $$0I:(DE-HGF)0$$60000-0002-1881-2547$$a HUN-REN, Szeged, Hungary$$b2
001023691 9101_ $$0I:(DE-HGF)0$$60000-0002-4597-535X$$aHUN-REN, Szeged, Hungary$$b3
001023691 9101_ $$0I:(DE-HGF)0$$6P:(DE-HGF)0$$a HUN-REN, Szeged, Hungary$$b4
001023691 9101_ $$0I:(DE-HGF)0$$6P:(DE-HGF)0$$a HUN-REN, Szeged, Hungary$$b5
001023691 9101_ $$0I:(DE-HGF)0$$60000-0003-3043-4857$$a University of Szeged, Szeged, Hungary$$b6
001023691 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)143649$$aForschungszentrum Jülich$$b7$$kFZJ
001023691 9101_ $$0I:(DE-HGF)0$$6P:(DE-HGF)0$$a NUNHEMS Vegetable Seeds$$b8
001023691 9101_ $$0I:(DE-HGF)0$$6P:(DE-HGF)0$$a HUN-REN, Szeged, Hungary$$b9
001023691 9101_ $$0I:(DE-HGF)0$$6P:(DE-HGF)0$$a HUN-REN, Szeged, Hungary$$b10
001023691 9131_ $$0G:(DE-HGF)POF4-217$$1G:(DE-HGF)POF4-210$$2G:(DE-HGF)POF4-200$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-2171$$aDE-HGF$$bForschungsbereich Erde und Umwelt$$lErde im Wandel – Unsere Zukunft nachhaltig gestalten$$vFür eine nachhaltige Bio-Ökonomie – von Ressourcen zu Produkten$$x0
001023691 9141_ $$y2024
001023691 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2023-10-24
001023691 915__ $$0StatID:(DE-HGF)1190$$2StatID$$aDBCoverage$$bBiological Abstracts$$d2023-10-24
001023691 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2023-10-24
001023691 915__ $$0LIC:(DE-HGF)CCBYNC4$$2HGFVOC$$aCreative Commons Attribution-NonCommercial CC BY-NC 4.0
001023691 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
001023691 915__ $$0StatID:(DE-HGF)0420$$2StatID$$aNationallizenz$$d2024-12-17$$wger
001023691 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2024-12-17
001023691 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2024-12-17
001023691 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2024-12-17
001023691 915__ $$0StatID:(DE-HGF)1060$$2StatID$$aDBCoverage$$bCurrent Contents - Agriculture, Biology and Environmental Sciences$$d2024-12-17
001023691 915__ $$0StatID:(DE-HGF)1050$$2StatID$$aDBCoverage$$bBIOSIS Previews$$d2024-12-17
001023691 915__ $$0StatID:(DE-HGF)1030$$2StatID$$aDBCoverage$$bCurrent Contents - Life Sciences$$d2024-12-17
001023691 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2024-12-17
001023691 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bPLANT PHYSIOL BIOCH : 2022$$d2024-12-17
001023691 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search$$d2024-12-17
001023691 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC$$d2024-12-17
001023691 915__ $$0StatID:(DE-HGF)9905$$2StatID$$aIF >= 5$$bPLANT PHYSIOL BIOCH : 2022$$d2024-12-17
001023691 920__ $$lyes
001023691 9201_ $$0I:(DE-Juel1)IBG-2-20101118$$kIBG-2$$lPflanzenwissenschaften$$x0
001023691 980__ $$ajournal
001023691 980__ $$aVDB
001023691 980__ $$aUNRESTRICTED
001023691 980__ $$aI:(DE-Juel1)IBG-2-20101118
001023691 9801_ $$aFullTexts