001023708 001__ 1023708
001023708 005__ 20250224101132.0
001023708 0247_ $$2doi$$a10.1039/D3CP06061F
001023708 0247_ $$2ISSN$$a1463-9076
001023708 0247_ $$2ISSN$$a1463-9084
001023708 0247_ $$2datacite_doi$$a10.34734/FZJ-2024-01765
001023708 0247_ $$2pmid$$a38375894
001023708 0247_ $$2WOS$$aWOS:001166404200001
001023708 037__ $$aFZJ-2024-01765
001023708 041__ $$aEnglish
001023708 082__ $$a540
001023708 1001_ $$0P:(DE-Juel1)179367$$aLee, Namkyu$$b0$$ufzj
001023708 245__ $$aNon-monotonic Soret coefficients of aqueous LiCl solutions with varying concentrations
001023708 260__ $$aCambridge$$bRSC Publ.$$c2024
001023708 3367_ $$2DRIVER$$aarticle
001023708 3367_ $$2DataCite$$aOutput Types/Journal article
001023708 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1709274232_19790
001023708 3367_ $$2BibTeX$$aARTICLE
001023708 3367_ $$2ORCID$$aJOURNAL_ARTICLE
001023708 3367_ $$00$$2EndNote$$aJournal Article
001023708 500__ $$adata can be found at 10.5281/zenodo.10666454
001023708 520__ $$aWe investigate the thermodiffusive properties of aqueous solutions of lithium chloride, using thermal diffusion forced Rayleigh scattering in a concentration range of 0.5 – 2 mole per kg of solvent and a temperature range of 5 to 45°C. All solutions exhibit non-monotonic variations of the Soret coefficient S_T with concentration exhibiting a minimum at about one mole per kg of solvent. The depth of the minimum decreases with increasing temperature and shifts slightly towards higher concentrations. We compare the experimental data with published data and apply a recent model based on overlapping hydration shells. Additionally, we calculate the ratio of the phenomenological Onsager coefficients L_{1q}'/{L_{11} using our experimental results and published data to calculate the thermodynamic factor. Simple linear, quadratic and exponential functions can be used to describe this ratio accurately and together with the thermodynamic factors the experimental Soret coefficients can be reproduced. The main conclusion from this analysis is that the minimum in the Soret coefficients results from a maximum in the thermodynamic factor, which appears itself at concentrations far below the experimental concentrations. Only after multiplication with the (negative) monotonous Onsager ratio does the minimum move into the experimental concentration window.
001023708 536__ $$0G:(DE-HGF)POF4-5241$$a5241 - Molecular Information Processing in Cellular Systems (POF4-524)$$cPOF4-524$$fPOF IV$$x0
001023708 588__ $$aDataset connected to CrossRef, Journals: juser.fz-juelich.de
001023708 7001_ $$0P:(DE-Juel1)179461$$aMohanakumar, Shilpa$$b1
001023708 7001_ $$0P:(DE-Juel1)159317$$aBriels, Willem$$b2
001023708 7001_ $$0P:(DE-Juel1)131034$$aWiegand, Simone$$b3$$eCorresponding author
001023708 773__ $$0PERI:(DE-600)1476244-4$$a10.1039/D3CP06061F$$gVol. 26, no. 9, p. 7830 - 7836$$n9$$p7830 - 7836$$tPhysical chemistry, chemical physics$$v26$$x1463-9076$$y2024
001023708 8564_ $$uhttps://juser.fz-juelich.de/record/1023708/files/d3cp06061f.pdf$$yOpenAccess
001023708 8564_ $$uhttps://juser.fz-juelich.de/record/1023708/files/d3cp06061f.gif?subformat=icon$$xicon$$yOpenAccess
001023708 8564_ $$uhttps://juser.fz-juelich.de/record/1023708/files/d3cp06061f.jpg?subformat=icon-1440$$xicon-1440$$yOpenAccess
001023708 8564_ $$uhttps://juser.fz-juelich.de/record/1023708/files/d3cp06061f.jpg?subformat=icon-180$$xicon-180$$yOpenAccess
001023708 8564_ $$uhttps://juser.fz-juelich.de/record/1023708/files/d3cp06061f.jpg?subformat=icon-640$$xicon-640$$yOpenAccess
001023708 8767_ $$d2024-04-03$$eHybrid-OA$$jPublish and Read
001023708 909CO $$ooai:juser.fz-juelich.de:1023708$$pdnbdelivery$$popenCost$$pVDB$$pdriver$$popen_access$$popenaire
001023708 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)179367$$aForschungszentrum Jülich$$b0$$kFZJ
001023708 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)179461$$aForschungszentrum Jülich$$b1$$kFZJ
001023708 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)159317$$aForschungszentrum Jülich$$b2$$kFZJ
001023708 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)131034$$aForschungszentrum Jülich$$b3$$kFZJ
001023708 9131_ $$0G:(DE-HGF)POF4-524$$1G:(DE-HGF)POF4-520$$2G:(DE-HGF)POF4-500$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-5241$$aDE-HGF$$bKey Technologies$$lNatural, Artificial and Cognitive Information Processing$$vMolecular and Cellular Information Processing$$x0
001023708 9141_ $$y2024
001023708 915__ $$0LIC:(DE-HGF)CCBY3$$2HGFVOC$$aCreative Commons Attribution CC BY 3.0
001023708 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2023-10-21
001023708 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2023-10-21
001023708 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
001023708 915__ $$0StatID:(DE-HGF)0430$$2StatID$$aNational-Konsortium$$d2024-12-09$$wger
001023708 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2024-12-09
001023708 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2024-12-09
001023708 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2024-12-09
001023708 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences$$d2024-12-09
001023708 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2024-12-09
001023708 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bPHYS CHEM CHEM PHYS : 2022$$d2024-12-09
001023708 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5$$d2024-12-09
001023708 915pc $$0PC:(DE-HGF)0000$$2APC$$aAPC keys set
001023708 915pc $$0PC:(DE-HGF)0001$$2APC$$aLocal Funding
001023708 915pc $$0PC:(DE-HGF)0002$$2APC$$aDFG OA Publikationskosten
001023708 915pc $$0PC:(DE-HGF)0110$$2APC$$aTIB: Royal Society of Chemistry 2021
001023708 920__ $$lyes
001023708 9201_ $$0I:(DE-Juel1)IBI-4-20200312$$kIBI-4$$lBiomakromolekulare Systeme und Prozesse$$x0
001023708 9801_ $$aFullTexts
001023708 980__ $$ajournal
001023708 980__ $$aVDB
001023708 980__ $$aUNRESTRICTED
001023708 980__ $$aI:(DE-Juel1)IBI-4-20200312
001023708 980__ $$aAPC