001023722 001__ 1023722
001023722 005__ 20240301205119.0
001023722 0247_ $$2doi$$a10.48550/ARXIV.2402.17744
001023722 037__ $$aFZJ-2024-01777
001023722 1001_ $$0P:(DE-HGF)0$$aOberstrass, Alexander$$b0$$eCorresponding author
001023722 245__ $$aAnalyzing Regional Organization of the Human Hippocampus in 3D-PLI Using Contrastive Learning and Geometric Unfolding
001023722 260__ $$barXiv$$c2024
001023722 3367_ $$0PUB:(DE-HGF)25$$2PUB:(DE-HGF)$$aPreprint$$bpreprint$$mpreprint$$s1709285996_20536
001023722 3367_ $$2ORCID$$aWORKING_PAPER
001023722 3367_ $$028$$2EndNote$$aElectronic Article
001023722 3367_ $$2DRIVER$$apreprint
001023722 3367_ $$2BibTeX$$aARTICLE
001023722 3367_ $$2DataCite$$aOutput Types/Working Paper
001023722 520__ $$aUnderstanding the cortical organization of the human brain requires interpretable descriptors for distinct structural and functional imaging data. 3D polarized light imaging (3D-PLI) is an imaging modality for visualizing fiber architecture in postmortem brains with high resolution that also captures the presence of cell bodies, for example, to identify hippocampal subfields. The rich texture in 3D-PLI images, however, makes this modality particularly difficult to analyze and best practices for characterizing architectonic patterns still need to be established. In this work, we demonstrate a novel method to analyze the regional organization of the human hippocampus in 3D-PLI by combining recent advances in unfolding methods with deep texture features obtained using a self-supervised contrastive learning approach. We identify clusters in the representations that correspond well with classical descriptions of hippocampal subfields, lending validity to the developed methodology.
001023722 536__ $$0G:(DE-HGF)POF4-5254$$a5254 - Neuroscientific Data Analytics and AI (POF4-525)$$cPOF4-525$$fPOF IV$$x0
001023722 536__ $$0G:(EU-Grant)945539$$aHBP SGA3 - Human Brain Project Specific Grant Agreement 3 (945539)$$c945539$$fH2020-SGA-FETFLAG-HBP-2019$$x1
001023722 536__ $$0G:(DE-HGF)InterLabs-0015$$aHIBALL - Helmholtz International BigBrain Analytics and Learning Laboratory (HIBALL) (InterLabs-0015)$$cInterLabs-0015$$x2
001023722 536__ $$0G:(EU-Grant)101147319$$aEBRAINS 2.0 - EBRAINS 2.0: A Research Infrastructure to Advance Neuroscience and Brain Health (101147319)$$c101147319$$fHORIZON-INFRA-2022-SERV-B-01$$x3
001023722 588__ $$aDataset connected to DataCite
001023722 650_7 $$2Other$$aComputer Vision and Pattern Recognition (cs.CV)
001023722 650_7 $$2Other$$aFOS: Computer and information sciences
001023722 7001_ $$0P:(DE-HGF)0$$aDeKraker, Jordan$$b1
001023722 7001_ $$0P:(DE-Juel1)131701$$aPalomero-Gallagher, Nicola$$b2$$ufzj
001023722 7001_ $$0P:(DE-HGF)0$$aMuenzing, Sascha E. A.$$b3
001023722 7001_ $$0P:(DE-HGF)0$$aEvans, Alan C.$$b4
001023722 7001_ $$0P:(DE-Juel1)131632$$aAxer, Markus$$b5$$ufzj
001023722 7001_ $$0P:(DE-Juel1)131631$$aAmunts, Katrin$$b6$$ufzj
001023722 7001_ $$0P:(DE-Juel1)165746$$aDickscheid, Timo$$b7$$ufzj
001023722 773__ $$a10.48550/ARXIV.2402.17744
001023722 909CO $$ooai:juser.fz-juelich.de:1023722$$popenaire$$pVDB$$pec_fundedresources
001023722 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)131701$$aForschungszentrum Jülich$$b2$$kFZJ
001023722 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)131632$$aForschungszentrum Jülich$$b5$$kFZJ
001023722 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)131631$$aForschungszentrum Jülich$$b6$$kFZJ
001023722 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)165746$$aForschungszentrum Jülich$$b7$$kFZJ
001023722 9131_ $$0G:(DE-HGF)POF4-525$$1G:(DE-HGF)POF4-520$$2G:(DE-HGF)POF4-500$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-5254$$aDE-HGF$$bKey Technologies$$lNatural, Artificial and Cognitive Information Processing$$vDecoding Brain Organization and Dysfunction$$x0
001023722 9141_ $$y2024
001023722 9201_ $$0I:(DE-Juel1)INM-1-20090406$$kINM-1$$lStrukturelle und funktionelle Organisation des Gehirns$$x0
001023722 980__ $$apreprint
001023722 980__ $$aVDB
001023722 980__ $$aI:(DE-Juel1)INM-1-20090406
001023722 980__ $$aUNRESTRICTED