001     1023745
005     20250204113809.0
024 7 _ |a 10.1063/5.0195222
|2 doi
024 7 _ |a 0003-6951
|2 ISSN
024 7 _ |a 1520-8842
|2 ISSN
024 7 _ |a 1077-3118
|2 ISSN
024 7 _ |a 10.34734/FZJ-2024-01785
|2 datacite_doi
024 7 _ |a WOS:001178221300003
|2 WOS
037 _ _ |a FZJ-2024-01785
082 _ _ |a 530
100 1 _ |a Chen, Ying-Jiun
|0 P:(DE-Juel1)171668
|b 0
|e Corresponding author
245 _ _ |a Magnons in a two-dimensional Weyl magnet
260 _ _ |a Melville, NY
|c 2024
|b American Inst. of Physics
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1709880411_21345
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a The discovery of topological states of matter has led to a revolution in condensed-matter science. While a non-trivial band topology in a material is often associated with intriguing transport properties, much less attention has been given to the impact on spin dynamics and non-equilibrium magnetization states. Here, we provide evidence that a chiral asymmetric magnon dispersion in the two-dimensional Weyl magnet Fe/W(110) is related to the presence of Weyl fermions close to the Fermi energy and surface Fermi arcs. We find that the large anomalous Hall conductivity and the Dzyaloshinskii–Moriya interaction are attributed to the non-trivial band topology in the composite momentum-magnetization space. Our results show the direct impact of Weyl fermions on both the charge and spin dynamics in a two-dimensional magnet. Unveiling these principles can promote innovative technologies in magnonics by utilizing topological materials, where magnons and non-trivial topological electronic states can be manipulated through magnetization.
536 _ _ |a 5211 - Topological Matter (POF4-521)
|0 G:(DE-HGF)POF4-5211
|c POF4-521
|f POF IV
|x 0
536 _ _ |a DFG project 444844585 - Statische und dynamische Kopplung von Gitter- und elektronischen Freiheitsgraden in magnetisch geordneten Übergangsmetalldichalkogenieden (B06) (444844585)
|0 G:(GEPRIS)444844585
|c 444844585
|x 1
588 _ _ |a Dataset connected to CrossRef, Journals: juser.fz-juelich.de
700 1 _ |a Chuang, Tzu-Hung
|0 P:(DE-HGF)0
|b 1
700 1 _ |a Hanke, Jan-Philipp
|0 P:(DE-Juel1)161179
|b 2
700 1 _ |a Mokrousov, Yuriy
|0 P:(DE-Juel1)130848
|b 3
700 1 _ |a Blügel, Stefan
|0 P:(DE-Juel1)130548
|b 4
700 1 _ |a Schneider, Claus M.
|0 P:(DE-Juel1)130948
|b 5
700 1 _ |a Tusche, Christian
|0 P:(DE-Juel1)168293
|b 6
|e Corresponding author
773 _ _ |a 10.1063/5.0195222
|g Vol. 124, no. 9, p. 093105
|0 PERI:(DE-600)1469436-0
|n 9
|p 093105
|t Applied physics letters
|v 124
|y 2024
|x 0003-6951
856 4 _ |y OpenAccess
|u https://juser.fz-juelich.de/record/1023745/files/093105_1_5.0195222.pdf
856 4 _ |y OpenAccess
|x icon
|u https://juser.fz-juelich.de/record/1023745/files/093105_1_5.0195222.gif?subformat=icon
856 4 _ |y OpenAccess
|x icon-1440
|u https://juser.fz-juelich.de/record/1023745/files/093105_1_5.0195222.jpg?subformat=icon-1440
856 4 _ |y OpenAccess
|x icon-180
|u https://juser.fz-juelich.de/record/1023745/files/093105_1_5.0195222.jpg?subformat=icon-180
856 4 _ |y OpenAccess
|x icon-640
|u https://juser.fz-juelich.de/record/1023745/files/093105_1_5.0195222.jpg?subformat=icon-640
909 C O |o oai:juser.fz-juelich.de:1023745
|p openaire
|p open_access
|p driver
|p VDB
|p openCost
|p dnbdelivery
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 0
|6 P:(DE-Juel1)171668
910 1 _ |a National Synchrotron Radiation Research Center , Hsinchu 300092, Taiwan
|0 I:(DE-HGF)0
|b 1
|6 P:(DE-HGF)0
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 3
|6 P:(DE-Juel1)130848
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 4
|6 P:(DE-Juel1)130548
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 5
|6 P:(DE-Juel1)130948
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 6
|6 P:(DE-Juel1)168293
913 1 _ |a DE-HGF
|b Key Technologies
|l Natural, Artificial and Cognitive Information Processing
|1 G:(DE-HGF)POF4-520
|0 G:(DE-HGF)POF4-521
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-500
|4 G:(DE-HGF)POF
|v Quantum Materials
|9 G:(DE-HGF)POF4-5211
|x 0
914 1 _ |y 2024
915 p c |a APC keys set
|2 APC
|0 PC:(DE-HGF)0000
915 p c |a Local Funding
|2 APC
|0 PC:(DE-HGF)0001
915 p c |a DFG OA Publikationskosten
|2 APC
|0 PC:(DE-HGF)0002
915 p c |a TIB: AIP Publishing 2021
|2 APC
|0 PC:(DE-HGF)0102
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a Creative Commons Attribution CC BY 4.0
|0 LIC:(DE-HGF)CCBY4
|2 HGFVOC
915 _ _ |a National-Konsortium
|0 StatID:(DE-HGF)0430
|2 StatID
|d 2024-12-18
|w ger
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2024-12-18
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2024-12-18
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2024-12-18
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1150
|2 StatID
|b Current Contents - Physical, Chemical and Earth Sciences
|d 2024-12-18
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2024-12-18
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b APPL PHYS LETT : 2022
|d 2024-12-18
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0600
|2 StatID
|b Ebsco Academic Search
|d 2024-12-18
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b ASC
|d 2024-12-18
915 _ _ |a IF < 5
|0 StatID:(DE-HGF)9900
|2 StatID
|d 2024-12-18
920 1 _ |0 I:(DE-Juel1)PGI-1-20110106
|k PGI-1
|l Quanten-Theorie der Materialien
|x 0
920 1 _ |0 I:(DE-Juel1)PGI-6-20110106
|k PGI-6
|l Elektronische Eigenschaften
|x 1
920 1 _ |0 I:(DE-Juel1)ER-C-1-20170209
|k ER-C-1
|l Physik Nanoskaliger Systeme
|x 2
980 1 _ |a FullTexts
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)PGI-1-20110106
980 _ _ |a I:(DE-Juel1)PGI-6-20110106
980 _ _ |a I:(DE-Juel1)ER-C-1-20170209
980 _ _ |a APC


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21