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A B S T R A C T   

The accurate quantification and assessment of available renewable energy resources has emerged as a research 
topic with high relevance to policymakers and industry. Motivated by the need for a contemporary review on the 
methodologies and practices prevalent in wind resource assessments, we employ a systematic analysis of 195 
articles that describe large-scale wind assessments. Our review reveals significant heterogeneity in global and 
continental-scale potentials and geographical bias of research towards the Northern Hemisphere, despite elec
trification needs in regions like Africa and Latin America. A fraction of the literature attempts to explicitly 
include social and political barriers to wind power development, thereby defining ‘feasible’ potentials. We delve 
into advancements in this domain, focusing on innovative methodologies that encapsulate the viewpoints of 
subject experts and stakeholders in the assessment process. Our analysis underscores pressing challenges relating 
to data sharing and scientific reproducibility, with our findings revealing a mere 10 % of studies that offer openly 
available data for download. This highlights a pervasive insufficiency in the reproducibility of wind assessments. 
Additionally, we tackle notable hurdles concerning wind data and meteorological characterization, including an 
over-reliance on single-source wind data and a deficit in adequately characterizing temporal wind variability. 
Relatedly, we uncover a highly heterogenous approach to turbine siting and characterizing wake-related losses. 
These methods are frequently simplistic, potentially leading to an overestimation of wind potentials by assuming 
an overly optimistic capacity density. In each of these domains, we discuss the state of the art for modern wind 
resource assessments, propose best practices, and pinpoint crucial areas warranting future research.   

1. Introduction 

Global greenhouse gas emissions are largely driven by the power 
sector, which accounted for almost 40 % of the CO2 emitted globally in 
2022 [1]. Decarbonization of energy systems is a key strategy to limit 
global warming to well below 2 ◦C by the end of the century, in line with 
Intergovernmental Panel on Climate Change (IPCC) goals [2]. Variable 
renewable energy generation systems, with wind energy a prominent 
contributor, have a crucial role to play in this transition. Between 2015 
and 2019, global wind power capacity grew by 70 % [2] and projections 
indicate a further growth of 2.4 TW over the next five years [3]. By the 
end of 2022, wind power held the largest global share of 
non-hydropower renewable capacity, at 906 GW [4]. Nevertheless, to 

achieve sustainable development goals, wind energy capacity must 
continue to grow, requiring focused, international collaboration on 
policies, business strategies and innovation [5]. 

The acceptance of ambitious energy transition policies is contingent 
upon trust in the underlying research and data. Wind resource assess
ments (WRAs) use computer programs to evaluate the potential wind 
energy that can be extracted from a given region and are instrumental in 
determining the feasibility of wind power projects [6,7]. WRAs have 
developed greatly as research field over the past several decades and 
play an increasingly important role in the public sphere. As a result, 
there is increased focus on the accuracy of these approaches: i.e., the 
extent to which they can accurately reflect the real extractable wind 
energy potential of a given region. The software used to perform these 
assessments make use of increasingly high-resolution data and 
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advancements in computing capabilities, while further improvements 
have been made in the methods used to model atmospheric conditions, 
to perform land eligibility assessments, and to account for the com
plexities and uncertainties of real-world wind power projects [7]. 
Moreover, the use of open data and open-source software has the ca
pacity to strengthen the reliability and real-world relevance of the re
sults by allowing peer researchers to scrutinize and validate methods 
and results. 

Significantly, WRAs are most often undertaken within academic 
environments, driven by scientific researchers, rather than in industry 
setting. Therefore, the principles of the scientific method are applicable 
– with the principle of reproducibility being fundamental [8]. Repro
ducibility, as defined by Gunderson [9] is: “the ability of independent 
investigators to draw the same conclusions from an experiment by following 
the documentation shared by the original investigators.” In the context of 
computational science and, by extension, WRAs, this necessitates the 
sharing of data and code which allows other researchers to not only 
verify the original results but also replicate the study [10]. As WRAs 
become increasingly significant in shaping energy policy and directing 
investment decisions in energy infrastructure, it is imperative that their 
conclusions are robust and credible, underscoring the importance of 
reproducibility. 

A variety of existing review papers on WRAs cover a wide range of 
sub-topics, from reviewing the current installed wind energy capacity 
[6,11-15] and estimated wind potentials [6,7,11,12], to challenges 
related to the high penetration of wind energy like the economic feasi
bility [12,13,16], environmental issues [17], technical and social con
cerns in urban environments [18,19], power system impacts [13], and 
socio-political barriers to large scale development [20,21]. Further, 
several review articles analyze the available software, models and tools 
for WRAs [6,11,22-24] and discuss datasets [7,22] and the application 
of numerical weather prediction (NWP) models [6]. On a technical level, 
there is large interest in wind turbine technology [6,7,11,18,25], and the 
significance of incorporating near-future wind turbine designs in wind 
assessments [7,26]. There are also ample reviews on the technical 
methodology contained within the subtasks of a WRA: for example, 
approaches to the vertical extrapolation of wind [27], approaches to 
characterizing the probability function of wind speed [28] and esti
mating Weibull parameters [27,29], methods of turbine siting [7,14], 
challenges in simulating turbine wake effects [30], and the growing use 
of artificial neural networks for wind prediction and data mining [31]. 
Finally, relating to the broader approach of the WRA, few review papers 
advocate for a standardized framework [22,23], for accurate represen
tation of important social and political factors in turbine siting [7,11,16, 
24], addressing the challenges of incorporating advanced economic 
complexities [6,7,11,12,16], and improving the validation and quanti
fication of uncertainty in WRAs [6,7,32]. 

To the best of our knowledge, there is no systematic review paper on 
large-scale WRAs with a key focus on the accuracy and reproducibility of 
the research results. Hence, our literature review addresses the core 
areas of WRAs where research focus should be directed. The outcome is 

thus to not only improve the accuracy and relevance of wind assess
ments, but also to foster public trust in the results, through adherence to 
the scientific method and scrutiny of the methodologies, data, and 
models employed in generating those results [33]. 

In the following sections, we present the results of our systematic 
review of 195 studies focusing specifically on our key findings. We use a 
systematic approach, and focus on the implementation of methodology, 
with respect to reproducible science and accuracy in the field of wind 
potential assessments. We thereby aim to uncover information on how to 
standardize the implementation of these assessments in the future, to 
help automate tasks and reduce the workload for steps that are often 
repeated, as well as to find key areas for future research focus and 
highlight knowledge gaps. To avoid redundancy, we avoid discussing 
findings that have already been reported in previous review papers on 
the topic of wind potential assessments (e.g. [7,28,30,34,35]). 

We present the Methodology for our review in Section 2, outline our 
Results in Section 3 and then discuss and synthesize the core findings, as 
well as introduce potential avenues for future research focus in Section 
4. 

2. Review methodology and scope 

Applying a systematic literature review method as per the “Preferred 
Reporting Items for Systematic review and Meta-Analyses” (PRISMA) 
[36] guidelines, we screened 1736 records on WRAs from SCOPUS 
(Elsevier) and Web of Science (WOS) (Clarivate Analytics) databases 
using the search terms outlined in the Appendix. Initial screening based 
on the criteria outlined in Fig. 1 excluded studies not focused on 
generating a wind potential assessment (e.g. [37–39]), lacking a soft
ware implementable approach (e.g. [40]), with a geographical extent 
below 2000 km2 (e.g. [41,42]) or at least seven observation sites (e.g. 
[43,44]), and studies concentrated on hybrid VRE systems, rooftop, or 
urban wind generation (e.g. [45]). Through this methodology, we were 
able to identify 195 studies performing large-scale wind resource as
sessments published between 2012 and 2022. 

Appendix Table 13 provides further information on the search terms 
used, while Tables 14 and 15 provide additional bibliometric informa
tion). Thus, we present a clear snapshot of the state of WRAs rather than 
only studies representing the best-practices. 

We next performed data extraction from the 195 articles into a 
Microsoft Excel worksheet, focusing on data related to accuracy and 
reproducibility. We have made this full worksheet available for down
load on Jülich Data. In the following sections, whenever we refer to 
studies, we are referring to our results in the detailed Excel worksheet 
provided. 

3. Results 

In following sections, we present the results of our literature review. 
In Section 3.1, we categorize the various types of wind potentials and 
discuss challenges in demarcating different potential types (Section 
3.1.1). We summarize results of large-scale studies, noting a bias toward 
Northern-Hemisphere regions (Section 3.1.2). Next, we emphasize the 
need for holistic methods to determine feasible wind potentials by 
addressing socio-political concerns and uncertainties in wind farm 
planning (Section 3.1.3), and examine existing methods Section 3.1.4. 
Section 3.2 shifts focus to the accuracy of WRAs and inconsistencies in 
data validation and assumptions (Section 3.1.2). Further sub-sections 
detail the importance of wind speed extrapolation methods (Section 
3.2.2), categorization of the wind resource (Section 3.2.3), and the need 
for diverse modelling scenarios and sensitivity analyses (Section 3.2.4). 
We address the current state of wake modelling in WRAs (Section 3.2.5). 
Finally, in Section 3.3 we critically analyze the current state of open data 
and open-source software in the literature, highlighting barriers to 
transparency in the field. 

Nomenclature 

Gross national income GNI 
Intergovernmental Panel on Climate Change IPCC 
Levelized cost of electricity LCOE 
Multi-criteria decision analysis MCDA 
Numerical weather prediction NWP 
Preferred Reporting Items for Systematic Reviews and Meta- 

Analyses PRISMA 
Weather Research and Forecasting model WRF 
Wind resource assessment WRA  
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Fig. 1. Flow diagram representing the methodology used in the systematic literature review according to the PRISMA 2020 guidelines [36]. Our analysis included 
two databases (SCOPUS and Web of Science Core) and the application of our exclusion criteria to an initial 1736 articles screened resulted in 195 articles included in 
the review. The review process was conducted from October 2022 to June 2023. From: http://www.prisma-statement.org/. 

Fig. 2. Hierarchy of wind potentials, from theoretical to feasible. Theoretical potentials reflect a region’s total available wind energy, while the geographical po
tential limits this value by excluding unusable land. The technical potential factors in turbine power curves, array losses, and transmission/distribution losses, further 
reducing the potential. Economic potentials refer to the available potential after setting a maximum cost of electricity (typically per MWh), while the feasible po
tential attempts to account for real-world complexities and uncertainties. Adapted from [50]. 
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3.1. Understanding wind power potentials 

3.1.1. Defining the different types of wind potentials 
Despite the acceleration of wind development globally, significant 

challenges remain for the large-scale adoption of wind power into na
tional grids. An accurate estimation of the wind potential, considering a 
realistic set of barriers to development, is essential for project planning 
and policy work. However, the term “wind potential” can refer to one of 
five types of potentials. A clear understanding of these potentials and 
their relevancy is essential in interpreting results of WRAs. Since wind 
potentials have been defined in detail in the previous literature [7, 
46-49], we do not develop the concept further here, but rather provide a 
brief illustrative description of common definitions for later reference in 
Fig. 2. 

As in McKenna et al. [7], we find that the boundaries between these 
types of potentials are often not clearly delineated in the reviewed 
studies. Specifically, the definition of "feasible" potential is difficult to 
apply since the definition often requires a high degree of subjective 
analysis, such as identifying the types of land exclusions that separate a 
feasible potential from a techno-economic one [202–204]. 

Additionally, some studies estimate the technical potential before 
accounting for relevant land exclusions (e.g. [49,51]). As per the defi
nitions used in this paper, this would mean that the technical potential is 
estimated before the geographical potential (which therefore has a 
lower potential and is defined in Archer & Jacobson, [49] as the 
“practical potential”). While the sequence in which wind resource po
tentials are estimated remains subject to healthy debate (see, e.g. the 
definitions in [7] and [49]), the majority of WRAs we reviewed align 
with our definitions. 

Most studies in our review can be classified as “technical” (n = 70, 
36 %) (see Table 1), incorporating a land eligibility assessment along 
with a simulation of wind generation by one or more wind turbine types, 
and accounting for various losses in the wind farm array (such as wake 
effects and electrical losses). Note that in this definition, a technical 
potential also includes a geographical potential – as a percentage of the 
land that is available for wind development – although this is often not 
referred to in the studies. Along with theoretical (27 %) and techno- 
economic (26 %) studies, technical potentials make up the bulk of the 
literature. We can classify only nine studies as generating a 
“geographical” potential as the end result (although almost all technical 
and techno-economic studies implicitly incorporate a geographical 

potential as a percentage value of available land which is then used for 
placing turbines and simulating power production). 

3.1.2. Results of large-scale wind resource assessments 

3.1.2.1. Global and continental-scale studies. Our review considers large 
geographical regions (national level or greater) of at least 2000 km2 or 
using observed data from at least seven sites. Fig. 3 shows that 27 global 
studies are included, with most focus on China (17), USA (13), Germany 
(9), India (9), and Pakistan (8). Europe and Asia are the most repre
sented continents, while Australia and South America are the least 
studied. A total of 24 studies focus on Africa, with six [105,113,114,148, 
167,180] continent-wide analyses (although only three provide an es
timate of the entire continent’s wind potential). 

Below, we present the results of selected global and continental-scale 
wind potential estimates. Table 2 provides insights into global-scale 
studies, while Table 3 focusses on European and Africa-scale analyses. 
One key observation is the diverse set of wind data sources employed 
across the studies, exhibiting marked differences in temporal and spatial 
resolution. Additionally, differences in technical characteristics of tur
bines and wind parks (see Section 3.2.3, 3.2.4), including hub height, 
nameplate capacity, turbine availability, array efficiency, and capacity 
density, contribute significantly to the disparities in results. Further 
assumptions surrounding land use availability contribute too, although 
these are not discussed in detail in this paper as they have already been 
addressed significantly in recent papers (e.g., [6,7,35]). 

At a global scale, our analysis reveals a wide range of estimates for 
overall wind potential, from 212 PWh [227] to 872 PWh [174] annual 
generation capacity. Notably, a consensus emerges among these studies, 
indicating that onshore wind resources exhibit a greater potential (be
tween 23 PWh/yr [145] and 580 PWh/yr [143]) compared to offshore 
wind (ranging from 69 PWh/yr [227] to 330 PWh/yr [261]). As 
described in McKenna et al. [7], application of a threshold LCOE value to 
the technical potential allows the estimation of an economic potential. 
With a maximum LCOE of 80 USD/MWh, Wu et al. estimate the onshore 
potential of 140 TW, with an offshore potential of 48 TW [189]. 
Meanwhile, Zhou et al. estimate the global onshore economic wind 
potential at 120 PWh/yr at 90 USD/MWh [51], while Silva Herran es
timates 29 PWh/yr at 100 USD/MWh [232]. 

Note that only Archer & Jacobson [57] run global simulations in a 
climate model to explicitly account for kinetic energy extraction by 
turbines when calculating the technical wind potential. Marvel et al. 
[99] also run a similar simulation, but they calculate a theoretical po
tential, since turbines are simulated over the entire planet and the 
analysis does not exclude unavailable land. Other studies use a multi
plication factor of 80 – 95 % to represent the overall array efficiency and 
account for losses. The limitations of this approach are discussed in 
Section 3.2.5. 

At a continental scale, the variation in wind potential estimates 
persists. For Europe, McKenna et al. estimate an onshore technical po
tential of 20 PWh/yr [211], while Ryberg et al. suggest a higher estimate 
of 34 PWh/yr [48], with an economic potential of 16 PWh/yr at 60 
USD/MWh. In stark contrast, Enevoldsen et al. estimate a much larger 
technical potential of 138 PWh/yr [238], leading to a discussion on the 
methodology of the latter paper [262,263]. For Africa, Sterl et al. esti
mate an onshore potential of 29 TW [105], while Mentis et al. estimate 
the onshore generation capacity at 31 PWh/yr [113]. Elsner et al. focus 
on offshore potential, estimating it at 11 PWh/yr [148]. In the following 
sections of this paper, we explore key reasons for these discrepancies in 
results and propose methods for improving the accuracy of future 
large-scale WRAs. 

Note that in Tables 2 and 3, we differentiate between onshore and 
offshore results. However, in the rest of the paper, we generally consider 
these two together, given that their methodological frameworks are 
largely the same. Even so, several distinctions can be made which 

Table 1 
Distribution of the wind resource assessment type through the literature, clas
sified according to onshore, offshore, or both. Note that these refer to the result 
of the study. A technical assessment would, by definition, also include a 
geographical assessment although this may not be reported in the study.  

Type of assessment Extent Count Refs 

Theoretical  53   
Onshore 27 [52–78]  
Offshore 11 [79–89]  
Onshore & Offshore 15 [90–104] 

Geographical  9   
Onshore 8 [34,105-111]  
Offshore 0   
Onshore & offshore 1 [112] 

Technical  70   
Onshore 36 [35,113-147]  
Offshore 19 [148–166]  
Onshore & Offshore 15 [14,49,167-179] 

Techno-economic  50   
Onshore 37 [48,51,180–214]  
Offshore 9 [215–223]  
Onshore & Offshore 4 [224–227] 

Feasible  13   
Onshore 6 [217,228-232]  
Offshore 6 [160,233-237]  
Onshore & Offshore 1 [238]  
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warrant specific attention, as follows: 
First, the results of our review showed that offshore areas generally 

exhibit greater wind speed than on land (see, e.g. [94,174,175,179, 
238]), while onshore wind is subject to greater variability on small 
geographical scales, due to differences in topographical features which 
require high resolution data to accurately model (e.g. [76,95,102,173]). 
Second, observation wind data sources may diverge: offshore WRAs in 
predominantly rely on buoys and satellites (e.g. [81,89,155]), while 
onshore assessments generally utilize existing meteorological stations. 
Third, there are significant differences in wind turbine characteristics: 
offshore turbines are significantly larger, both in terms of dimensions 
and power output, compared to those developed for onshore use. Fourth, 
land-use evaluations are typically more complex for onshore than 
offshore WRAs due to a multitude of land-use categories and associated 
regulations. Conversely, offshore assessments utilize eligibility assess
ments which usually entail fewer exclusionary parameters, such as dis
tance to shore, proximity to shipping lanes, and the ocean depth, among 
others. Finally, cost assessments, including LCOEs, differ substantially 
between onshore and offshore installations owing to differences in 
infrastructure and regulations. 

3.1.2.2. Northern hemisphere bias. As described in Table 4, our review 
revealed a Northern Hemisphere bias in large-scale wind resource as
sessments, especially focused on Europe and Asia. Although many 
studies estimate wind potentials for “Lower middle income” nations, 
Northern Hemisphere “high income” nations [276] remain dominant. 
This echoes the observation of scarce literature in energy system 
modelling in Africa [243,277], despite projected growth of renewable 
electricity production there over the next decade [278]. Increased 
research on underrepresented regions, particularly in the Southern 
Hemisphere, is urgently required. 

Seyedhashemi et al. find that over 57 % of Africa’s landmass has a 
capacity factor above 20 %, making it viable for wind energy extraction 
[114]. Meanwhile, Sterl et al. [105] develop an open-source workflow 
for generating model supply regions over African, finding a similar 
“boomerang” distribution of potential (high potentials over Northern 
and Southern Africa, lower potentials over Central Africa) and an 
average levelized cost of electricity (LCOE) of $35 – $127/MWh (2022 
USD). Elsner et al. [148] estimate the continent’s gross (without 
deduction of array and transmission losses) annual technical offshore 
potential at 11.3 PWh when including the full exclusive economic zone 
(EEZ), and 2.4 PWh for shallow water installations (both using a 

Fig. 3. (a) Geographical distribution of focus of the 195 articles analysed in this literature review. Global and continental-scale studies are illustrated as circles with 
bold outlines; (b) Total number of publications analysed in this paper per year; (c) Number of publications per year estimating theoretical (circles), technical (stars) 
and techno-economic (squares) potentials. 
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Table 2 
Overview of selected global studies within the literature review period (2012 – 2022), outlining technical aspects and the estimated technical and (where possible) economic potentials. For studies which include different 
technical specifications or results for onshore and offshore potentials, the two are separated with a slash “/” and the onshore-relevant value is given first.  

Reference Wind data source Spatial 
resolution [◦

lat-lon] 

Turbine 
capacity 
[MW] 

Hub 
height 
[m] 

Capacity 
density [MW/ 
km2] 

Turbine 
availability 
[%] 

Array 
efficiency 
[%] 

Avg. capacity 
factor [%] 

Technical 
potential 

Economic 
threshold [USD/ 
MWh] 

Economic 
potential 

A – Global onshore & offshore 
Archer & 

Jacobson, 2013  
[49] 

GFS reanalysis [264], 
GATOR-GCMM model [265], 
Observation data 

1.5◦ 5 100 Varies by grid 
cell. 

n.a. 87.5 28 93 TW n.a. n.a. 

Lu & McElroy 2012 Goddard Earth Observing 
System Data 
Assimilation System (GEOS-5 
DAS) 

0.63×0.5◦ 2.5 / 3.6 100 5.8 n.a n.a >20 840 PWh/yr 
(690 / 150 PWh/ 
yr) 

n.a n.a 

Jacobson & 
Archer, 2012  
[179] 

GATOR-GCMM model 1.5◦ 5 100 5.6 n.a. n.a. 31 80 TW (72 / 8 
TW)1 

n.a. n.a. 

Wu et al., 2022  
[189] 

Vortex [266] 9 km 3 100 5 n.a. n.a. 32 / 45 206 TW 
(150 / 56 TW) 

80 184 TW 
(140 / 48 
TW) 

Eurek et al., 2017  
[174] 

NCAR C Four-Dimensional 
Data Assimilation (CFDDA)  
[267] 

40 km 3.5 90 5 95 90 24 / 36 872 PWh/yr 
(557 / 315 PWh/ 
yr) 

n.a. n.a. 

Dupont et al., 2018 
[227] 

ERA-Interim [268] 0.75◦ 8 / 2 71 / 124 10 / 6.4 96 90 33 212 PWh/yr 
(143 / 69 PWh/ 
yr) 

Energy return on 
investment > 12 

27.5 PWh/yr 
(13.6 / 13.9 
PWh/yr) 

B – Global onshore            
Bosch et al., 2017  

[143] 
MERRA-2 [269], Global Wind 
Atlas [270] 

0.05◦ 2.5 - 7 100 6.5 97 n.a. >15 580 PWh/yr n.a. n.a. 

Zhou et al., 2012  
[51] 

NCEP: C Forecast Systems 
Reanalysis [271] 

0.3◦ 1.5 80 5 97 90 30 400 PWh/yr 90 119.5 PWh/ 
yr 

Silva Herran et al., 
2016 [232] 

Surface Meteorology and Solar 
Energy [272] 

1◦ 2 80 9 89 80 22 n.a. 100, 140 29, 110 
PWh/yr 

Jung, Taubert, & 
Schindler, 2019  
[145] 

ERA-20C [273] 0.5◦ 3.7 100 0.4, 1 97 95 n.a. 23.3 PWh/yr n.a. n.a. 

C – Global offshore            
Arent et al., 2012  

[165] 
NOAA Blended Sea Winds  
[274] 

0.25◦ 3.5 90 5 95 90 >20 192 PWh/yr n.a. n.a. 

Bosch et al., 2018  
[261] 

MERRA-2, Global Wind Atlas 0.05◦ 2.5 - 7 100 6.5 97 n.a. >15 330 PWh/yr n.a. n.a.  

1 Excluding land over Antarctica. When including this land mass, the total installable capacity is 253 TW. 
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Table 3 
Overview of selected continental studies for Europe and Africa within the literature review period (2012 – 2022), outlining technical aspects and the estimated technical and (where possible) economic potentials. For 
studies which include different technical specifications or results for onshore and offshore potentials, the two are separated with a slash “/” and the onshore-relevant value is given first.  

Reference Wind data source Spatial 
resolution [◦

lat-lon] 

Turbine 
capacity 
[MW] 

Hub 
height 
[m] 

Capacity 
density [MW/ 
km2] 

Turbine 
availability 
[%] 

Array 
efficiency 
[%] 

Avg. capacity 
factor [%] 

Technical 
potential 

Economic 
threshold [USD/ 
MWh] 

Economic 
potential 

A – European onshore & offshore 
Zappa & van den 

Broek, 2018  
[138] 

ERA-Interim [268] 0.75◦ n.a. 100 / 
150 

4.2 - 6 n.a. 87 22 / 38 849 GW (300 / 
549 GW) 

n.a. n.a. 

European 
Commission, 
2018 [178] 

MERRA [275], Global Wind 
Atlas [270] 

0.5×0.65◦ 0.25, 3 50 – 200 
/ 100 

5 n.a. 85 28 / 40 26 PWh/yr (11.7 
/ 14.3 PWh/yr) 

n.a. n.a. 

B – European onshore 
McKenna et al., 

2015 [211] 
ERA-Interim 0.75◦ 3 65 – 149 8.3 – 18.6 95 85 Variable. 20 n.a. n.a. 

Enevoldsen et al., 
2019 [238] 

Global Wind Atlas 0.01◦ 4.5 100 4.9 n.a. n.a. 30 138.0 PWh/yr n.a. n.a. 

Ryberg et al., 2018  
[48] 

Global Wind Atlas, MERRA 0.5×0.65◦ 3 – 5 88 – 120 Explicit 
placement 

n.a. n.a. n.a. 34.3 PWh/yr 60 € 22.1 PWh/yr 

C – European offshore 
Caglayan et al., 

2019 [223] 
MERRA 0.5×0.65◦ 3 – 20 80 – 200 Explicit 

placement 
n.a. n.a. n.a. 39.9 PWh/yr 60 € 16.2 PWh/yr 

D – African onshore 
Sterl et al., 2022  

[105] 
ERA-5, Global Wind Atlas 0.25◦ n.a. 100 12 n.a. n.a. 44 29 TW n.a. n.a. 

Mentis et al., 2015  
[113] 

VORTEX [266], NASA 
Climatology Resource for 
Agroclimatology 

6 km 2 80 2 – 5 97 90 >20 31 PWh/yr n.a. n.a. 

E – African offshore 
Elsner, 2019 [148] NOAA National Centres for 

Environmental Information 
(NCEI) 

0.25◦ 8 100 3 n.a. 70 >37 11.3 PWh/yr n.a. n.a.  

T. Pelser et al.                                                                                                                                                                                                                                   



Advances in Applied Energy 13 (2024) 100158

8

capacity factor threshold of 37.6 %). While national-scale WRAs are well 
represented by African researchers, only two continental-scale studies 
[167,180] were conducted by a lead author with an African affiliation. 

Only a handful of studies conducted WRAs for South American 
countries, despite the large potential for wind development. Vinhoza 
and Schaeffer [235] estimate Brazil’s offshore technical wind potential 
as about 1050 GW (with a feasible potential of 330 GW). Mattar & 
Borvaran calculate Chile’s offshore technical potential with an annual 
generation of ~30 GWh for an 8 MW turbine [80]. Furthermore, the 
International Renewable Energy Agency (IRENA) estimates South 
America’s wind potential at around 240 GW for grid-connected projects 
with further 180 GW available off grid [279]. In 2022, Latin America’s 
installed wind capacity was approximately 45 GW [4], highlighting a 
significant untapped potential. 

Per capita energy consumption is directly linked to human devel
opment [280–282]. Despite hosting almost 15 % of the world’s popu
lation [283], the Southern Hemisphere accounts for only 7 % of the its 
electricity consumption [284]. Excluding Australia, New Zealand, Brazil 
and South Africa, the mean per capita energy consumption for this re
gion is 800 kWh/year, which is considerably less than for Germany (7,5 
times) or the USA (15 times) [283,284]. To achieve Sustainable Devel
opment Goal 7 of “affordable, reliable and sustainable modern energy for 

all” by 2030, urgent expansion of the region’s electricity sector is 
needed. 

3.1.3. Holistic, feasible potentials are urgently needed 
While technical and techno-economic potential analyses can provide 

a reasonable estimation of the wind power availability of a given region, 
and even consider economic constraints, they may overlook key market, 
technical and socio-political barriers to wind power development [7,20, 
239-242]. Explicitly accounting for these barriers would allow wind 
potential assessments to provide more accurate estimations and serve as 
valuable resources for energy planning and policy. As such, feasible 
wind potentials attempt to incorporate a realistic set of barriers to wind 
development to provide an estimation of the available energy potential 
that is as close to the actual achievable real-world potential as possible. 
This is achieved by building on technical or techno-economic potential 
assessments to include further considerations. 

We find several innovative methodologies that build upon traditional 
technical or techno-economic potential analyses which can be used to 
estimate feasible potentials. We highlight examples of these approaches 
in Table 5. Importantly, these methods are found separately throughout 
the literature, and no single study attempts to combine them to provide a 
fully holistic result. 

Additionally, it is essential to consider the perspectives of nations 
from the Global South in such analyses and to account for important 
geographical differences in energy markets, socio-political circum
stances, and institutions – factors which impact the relevance of results 
from wind potential analyses [243]. For example, Diógenes et al. [242] 
find that social barriers (e.g., the absence of community-level accep
tance) are reported in 88 % of developed nations, yet in only 12 % of 
developing nations. Conversely, issues with “poor market infrastruc
ture” are reported in over half of developing nations, but only 8 % of 
studies from developed countries [242]. In a similar vein, Zwarteveen 
et al. [20] cluster 259 factors affecting wind energy expansion into eight 
categories, and discover significant differences based on the income 
level of the country being considered, thereby highlighting the impor
tance of considering geographical differences in barriers to expansion of 
wind energy. 

Expanding on the approaches to estimating feasible potentials, 
McKenna et al. [7] outline three methods, which we also elaborate on 
here. First are land eligibility studies which consider a larger set of re
strictions than geographical potentials, striving to incorporate 
non-technical impacts into potential assessments. These could be, for 
example, exclusions of areas impacting cultural sites [34], landscape 
protected zones [172], or non-human life, like animal migration routes 
[186] or coral reefs [221]. We have not categorized such studies as 
feasible potentials in our review because, while accounting for a wide 
range of social impacts, they often do not fully reflect the ambiguity and 
complexity inherent in real-world siting [7,14]. 

Second are studies which perform welfare analyses: i.e., which 
attempt to minimize the total social cost of wind turbine development. 
For example, Langer et al. [203] create a flexible model for site selection 
in Indonesia, allowing a flexible approach for assessing site feasibility 
based on stakeholder input. Similar to [7], we could not find a study 
where a full welfare analysis was conducted. Lastly, there are 
multi-criterion decision analysis (MCDA) approaches, which often 
overlap with the welfare analyses category. 

In assessing the wind potential, local barriers such as setback regu
lations can vary substantially, not just between countries, but also 
among provinces within a nation. Public attitudes toward wind park 
development greatly influence the development of real-world wind 
farms and thus there needs to be an attempt to include these in WRA 
models [14,240,242,245,246]. These can include concerns regarding 
noise [247–250], visual impacts [241,251-253], and environmental ef
fects – for example, obstructing migratory bird routes [254–256], among 
many others. These factors are typically integrated into assessments as 
“hard” exclusions; that is, any land meeting the exclusion criteria (for 

Table 4 
Classification of national-scale wind potential analyses based on the World Bank 
income classification of 2022–2023 [276] according to Gross National Income 
(GNI). Note that continental and global studies are excluded from this table, 
which is why the percentage values do not add up to 100 %. Dollar units are 
equivalent to 2022 USD.  

Classification Annual GNI 
/ capita 

Countries Share 
[%] 

High income > $13,205 Australia [54], Austria [181], 
Canada [90], Chile [80,182,215], 
China [55,56,79,106,117-119,149, 
168,169,183-185,224,225,234], 
Czechia [120], Denmark [120], 
Finland [57], France [170], 
Germany [35,58,107,121-123, 
186-189], Greece [81], Italy [150], 
Japan [91,151], Kuwait [92], Oman  
[152], Poland [190], Portugal [53, 
59], Qatar [171], Romania [153], 
Saudi Arabia [191,228], Spain  
[154], Sweden [172], Switzerland 
[60,172], United Kingdom [115,216, 
229], United States of America [61, 
82,93,94,124,125,155,173,192,193, 
226,230] 

34 
(n=67) 

Upper middle 
income 

$4256 - 
$13,205 

Azerbaijan [214], Brazil [235], 
Colombia [62], Fiji [95], Jordan  
[116], Kazakhstan [194], Malaysia  
[126], Mexico [127,156,157], Serbia 
[217], South Africa [63,128,129, 
158], Thailand [64,159,160,218], 
Turkey [108,236], Turkmenistan  
[195] 

11 
(n=22) 

Lower middle 
income 

$1086 - 
$4255 

Algeria [65,96,196,197], Bangladesh 
[66,130], Benin [83], Cambodia  
[150], Cameroon [67], 
Djibouti [198], Egypt [199,200,219, 
233], India [68,69,84,97,98,109, 
161,201,202], Indonesia [131,203], 
Iran [132,133,220], Lebanon [85], 
Lesotho [70], Nepal [204], Nigeria 
[134,205,206], Pakistan [71,110, 
135,146,207-209], Philippines  
[221], Sri Lanka [110], Uzbekistan  
[210], Venezuela [136], Vietnam 
[162,231] 

26 
(n=51) 

Low income < $1085 Afghanistan [111], Chad [72], 
Ethiopia [73], S. Sudan [74], Zambia 
[75] 

3 (n=5)  
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example, proximity to urban areas, protected lands, or animal migratory 
routes) is entirely omitted from the available land, often with an addi
tional setback distance added. However, this binary approach does not 
accurately reflect the complexity of real-world decision-making, 
particularly when legal guidelines are ambiguous or non-existent [14, 
35,257]. In such cases, a more dynamic methodology, involving the 
weighted optimization of multiple land categories, offers a more realistic 
and flexible assessment framework [189,228,258]. 

3.1.4. Multi-criteria decision analysis (MCDA) approaches 
In the MCDA approach, trade-offs between different objectives are 

explicitly modelled under various scenarios. This set of methods, 
growing in use in energy system modelling, allows stakeholders and 
decision-makers to consider quantitative, technical goals alongside so
cial or non-technical criteria [7,258]. Typically, weights are assigned to 
various objectives (such as distance to settlements, use of forests, or 
environmental impacts) to optimize the placement of turbines, consid
ering the multidimensional nature of energy system planning. Despite 
the considerable difficulties in assigning weights to various criteria 
[259], MCDA modelling offers a more holistic and balanced approach to 
siting than a traditional, binary land eligibility analysis. We find several 
types of MCDA methodologies in the literature, detailed in Table 6. 

The most common MCDA method is the Analytic Hierarchy Process 
(AHP), employed in 11 studies. This is followed by the “Fuzzy-AHP” 
methodology, incorporating fuzzy numbers into the AHP framework to 
better account for uncertainty and vagueness in the decision-making 
process. Other methodologies include Mostafaeipour et al. [111], 
using the Stepwise Weight Assessment Ratio Analysis (SWARA) method 

Table 5 
Selected approaches from the literature that build on traditional techno- 
economic analyses to incorporate complex considerations needed for a 
feasible potential analysis.  

Approach Region Details Reference 

A - Additional economic factors 
Grid connectivity Nepal Includes grid connectivity, 

transmission costs to identify 
project opportunity areas 

[204] 

Turbine ageing United 
Kingdom 

Accounts for the economic 
impacts of wind turbine 
ageing 

[115] 

Cradle-to-grave 
lifecycle 

Global Uses “energy return on 
investment” to account for 
cradle-to-grave lifecycle of 
wind power 

[227] 

Use of industry 
standard turbine 
classes 

Global Use of wind speed classes to 
select turbine and calculate 
CAPEX costs and account for 
extreme gusts 

[212] 

B - Use of multiple scenarios 
Wind power 

generation 
scenarios 

China Calculates the LCOE under 
three different wind power 
generation scenarios 

[225] 

Multiple demand 
scenarios 

Europe Optimisation algorithm for 
placing turbines under 
multiple demand scenarios 

[138] 

Multi-objective 
optimisation 
scenarios 

China Uses three multi-objective 
optimization scenarios for 
zonal deployment of wind 
power in China 

[118] 

Use of multiple land 
restriction 
scenarios 

Germany Employs five land restriction 
scenarios and conducts a 
sensitivity analysis 

[35] 

C - Incorporation of non-technical elements 
Impacts of turbine 

visibility 
Global Evaluates the impacts of 

transmission costs and 
visibility impacts under three 
scenarios 

[232] 

Social acceptance 
criteria 

United 
Kingdom 

Defines several social 
acceptance criteria and 
incorporates them into a 
MCDA model 

[229] 

Policy risk and 
employment 

Egypt Includes policy risk and 
employment issues in a 
MCDA-model 

[219] 

Climate mitigation 
benefits 

China Calculates the CO2 savings 
from wind projects 

[224] 

Participatory 
approach 

Aegean Sea Considers expert advice from 
multiple stakeholders decide 
on criteria weights in MCDA- 
analysis 

[244] 

Nature protected 
areas 

Poland Performs a sensitivity analysis 
of the effects of various buffer 
sizes for natural protected 
areas on wind potential 

[190] 

D - Novel machine learning / AI-based approaches 
Intelligent 

optimization 
algorithms 

China Uses a genetic algorithm for 
siting wind farms based on the 
spatial and temporal 
variability of wind 

[55] 

Machine learning 
methods 

Switzerland Develops an extreme learning 
machine based on a single 
layer feedforward neural 
network for siting turbines 

[142]  

Table 6 
Descriptions of MCDA methods used in at least two studies in the literature, and 
their application within the context of wind resource assessments.  

MCDA 
method 

Description Pros Cons Used 
in 

Analytic 
Hierarchy 
Process 
(AHP) 

A structured 
approach that 
creates a multi- 
level hierarchy 
and uses 
pairwise 
comparisons to 
calculate 
weights for 
each criterion 
and sub- 
criterion. 

Allows for both 
quantitative and 
qualitative data. 
Utilizes a 
consistency ratio 
to ensure logical 
consistency of 
weights. 

Weight 
assignments can 
be complex. 
Vagueness not as 
well dealt with as 
other methods. 

[109, 
110, 
149, 
150, 
158, 
218, 
231, 
235, 
236] 

Fuzzy AHP Builds on AHP 
by 
incorporating 
fuzzy set 
theory to 
better account 
for vagueness 
and 
uncertainty in 
weight 
classification. 

Allows for better 
handling of 
uncertainty. 
Incorporates 
quantitative data 
into the decision- 
making process. 

Greater 
complexity than 
AHP. 
High 
computational 
demands. 

[217, 
244] 

Fuzzy- 
TOPSIS 

Assigns fuzzy 
numbers to 
represent 
criteria for 
projects 
locations, 
based on their 
distance to the 
“ideal” and 
“anti-ideal” 
solutions and 
ranks 
alternatives by 
“closeness 
coefficient”. 

Straightforward 
ranking of 
locations by best 
to worst. 
Handles 
uncertainty and 
vagueness well. 

Computationally 
demanding and 
highly complex. 
Assumes 
independence of 
ranking criteria. 

[106, 
108, 
208] 

PROMTHEE Conducts a 
pairwise 
comparison of 
locations based 
on preference 
functions and 
ranks 
alternatives 
based on net 
flow scores. 

Allows the 
incorporation of 
multiple 
preference 
functions. 
Provides a full 
ranking of 
alternatives. 

Does not handle 
vagueness and 
uncertainty as 
well as other 
methods. 
Primarily for 
quantitative data. 

[228, 
234]  
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for calculating weights to the exclusion criteria. Similarly, Harper et al. 
[229] use a simple weighted sum method (WSM), while Gao et al. [55] 
employ a genetic optimization algorithm. Although the advancement in 
MCDA-based wind assessment research is promising, practical imple
mentation is not always possible due to the high computational demands 
and methodological complexity. 

Real-world wind energy project development is a long-term, complex 
decision-making process that is dependent on multiple factors including 
the economic viability, license agreements, and community acceptance 
[14,260]. During the initial feasibility phase, elements analogous to 
those modelled in WRAs are considered. These include wind charac
teristics, market considerations, and proximity to infrastructure such as 
power grids, housing, airports, and transportation networks. However, 
the in-situ complexity of wind farm development surpasses a mere se
lection of windy sites coupled with a binary land eligibility analysis. This 
conventional approach fails to mirror the multifaceted nature of actual 
wind development processes and can only offer limited utility to 
stakeholders. 

The incorporation of socio-political elements, adoption of diversified 
scenarios, or use of novel approaches, while an enhancement of the 
conventional approach, also does not inherently ensure a realistic esti
mation of feasible potentials in WRAs. For example, even if a study ac
counts for various societal barriers or cultural considerations, presuming 
a turbine deployment density exceeding real-world deployment would 
invariably result in overly optimistic potentials. To navigate these 
complexities and improve WRA accuracy, a more systematized approach 
should be considered which allows researchers to make use of best 
practices each time they perform an analysis. 

Consequently, we recommend the adoption of a standardized 
workflow which permits the incorporation of multiple facets of feasible 
potentials (for example, from Table 5). Such an approach would allow 
WRAs to align with existing best practices and removes the necessity of 
researchers to develop the full process of trying to include as many as
pects as possible of feasible potentials on each iteration – a task that 
inevitably grows in complexity over time. 

3.2. Approaches to enhancing the accuracy of wind resource assessments 

3.2.1. The critical role of wind data validation and multiple wind datasets 
In recent studies, the reliability of wind data used in WRAs, and the 

associated implications, have come under scrutiny. Davidson & Millstein 
[61] and Langer et al. [203] highlight a key challenge inherent in 
reanalysis data, identifying significant discrepancies between SCADA 
data and both MERRA-2 and ERA-5 reanalysis datasets, particularly at 
an hourly temporal resolution. These inconsistencies are further 
corroborated by Staffell & Pfenninger [52], who reveal that NASA’s 
flagship reanalysis datasets may overestimate wind speeds by as much as 
50 % in northwest Europe, while underestimating them by 30 % in the 
Mediterranean. Building on this, Soukissian & Papadopoulos [81] argue 
for the utilization of blended sea satellite data, which they posit as a 
more accurate alternative to NWP models, particularly for offshore 
studies in the Mediterranean area. The implication is that, since wind 
interactions with complex terrain manifest at both meso and micro 
scales, the use of a single wind dataset typically falls short in providing 
adequate results in WRAs. 

To address these discrepancies, three approaches are suggested in the 
literature. The first entails using high-resolution wind atlas data to 
downscale relatively coarse reanalysis data (e.g. [48,105,178,203]). 
Wind atlases, such as the Global Wind Atlas [270], provide static wind 
speed data at a very high resolution (~250 m2) and can effectively 
enhance the accuracy of reanalysis data at the local level through 
various interpolation techniques. 

The second approach relies on the validation of reanalysis data using 
meteorological station observations (e.g. [62,65,75,98]) or data from 
numerical weather prediction models (e.g. [155]). This allows re
searchers to quantify the reanalysis data bias and generate correction 

factors that can improve the overall data quality. 
The third approach involves using reanalysis data to set the initial 

boundary conditions for NWP models (e.g. [80,101,160]). This allows 
for the nesting of domains within the NWP model, providing enhanced 
boundary conditions. Several studies use more complex approaches, 
integrating a mix of data types for more comprehensive analyses (e.g. 
[53,75,81,89,100,103]). 

Despite the identified need for multi-source data and verification, 
our analysis reveals a prevalence of relying on a single source of wind 
data (67 % of studies). Only 10 % of studies used more than two data 
types and just 21 % performed a validation of the input data prior to the 
analysis (please refer to the Supplementary Materials for a full list of 
these studies). A selection of studies performing validation of input wind 
data is shown in Table 7. These results point to a significant gap in the 
current research methodology, emphasizing the need for more rigorous 
data validation and multiple sources of data. 

3.2.2. Adopting recent advancements in vertical wind speed extrapolation 
methods 

Between 1999 and 2021, the average onshore wind turbine hub 
height in the United States increased by approximately 66 %, from 57 m 
to 94 m [285]. In Europe, the average hub height for turbines installed in 
2020 was 104 m [286]. Wind velocity data are typically provided at 10 – 

Table 7 
Overview of selected studies where wind speed data is validated against 
observation data (meteorological masts or wind turbine data) and the root mean 
square error (RMSE) is quantified in m/s.  

Reference Data 
source 

Region No. 
stations 

RMSE 
[m/s] 

Wind 
height 
[m] 

A - Climate models 
Geyer et al. 2015 

[89] 
COSMO- 
CLM 

North Sea 7 2.59 10 

Akhtar et al. 
2021 
[163] 

COSMO- 
CLM 

North Sea  2.7 90 

Libanda and 
Paeth 2023  
[75] 

CMIP6 
(11 
models) 

Zambia 38 0.6 10 

B - Reanalysis datasets 
Onea et al. 2016  

[86] 
ERA- 
Interim 

Mediterranean 
Sea 

N.A. 2.24 10 

Satyanarayana 
Gubbala, 
Dodla, and 
Desamsetti 
2021 [98] 

ERA- 
Interim 

India N.A. 0.57 20 

Fekih, 
Abdelouahab, 
and Marif 
2023 [65] 

ERA-5 Algeria 3 1.49 10 

Gil Ruiz, Barriga, 
and Martínez 
2021 [62] 

ERA-5 Colombia 13 2.55 10 

Rabbani and 
Zeeshan 2020  
[135] 

MERRA- 
2 

Pakistan - 11.95 10 

C - NWP models 
D’Isidoro et al. 

2020 [70] 
WRF Lesotho 2 2.3 10 

Dayal et al. 2021  
[95] 

WRF Fiji 24 2.24 10 

Mattar and 
Borvarán 2016 
[80] 

WRF 
v3.6 Era- 
5 

Chile 1 2.2 20, 30, 
40 

Dvorak et al. 
2013 [155] 

WRF USA – East 
Coast 

32 2.24 5, 45 

Carvalho et al. 
2014 
[53] 

WRF 
v3.4.1 
Era- 
Interim 

Portugal 13 2.1 Various  
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50 m above ground. Since velocity increases with height mostly due to 
reduced effects of surface roughness and drag, a suitable method for 
extrapolating the wind speed to hub height is required. The three most 
common methods of vertical wind extrapolation in the literature, to 
estimate wind speed at hub height (z2) from a given lower wind speed 
(z1) are described in Table 8. These include logarithmic law (Log law), 
the power law, and linear (spline) interpolation between two known 
wind speeds at different heights. 

Gualtieri [27] reviews 332 applications of theoretical and empirical 
methods of vertical extrapolation of wind speeds. He finds that the 
logarithmic models are no longer suitable for extrapolation of wind 
speed to hub heights because of their limited range (median, 10 – 50 m) 
and high sensitivity to ground roughness. Eurek et al. [174] find that the 
normalized root mean square deviation (NRMSD) increases with height 
for all three methods, but that linear interpolation provides the most 
accurate wind speed extrapolation at 90 m hub height. In some cases, 
however, the power law provided similar results up to 115 m. Similarly, 
Soares et al. [87] find that both the log and power laws provided poor 
estimations of wind power density WPD at 100 m compared to linear 
interpolation, described as likely due to the complexities of accurately 
representing the atmospheric stabilities conditions. The choice of 
method for extrapolating wind speed to hub height may, therefore, 
introduce unexpected error into the result and thus, it is important that 
the rationale for selecting a particular method is documented. 

Previous work has been done to address the limitations of these 
common approaches. For example, Archer & Jacobson [290,291] 
developed a least squares fitting approach, which allows the extrapo
lation of wind speeds to hub height by fitting a wind speed profile to 
sounding station data and then extrapolating surface measurements to 
hub height using a nearby sounding profile. The extent to which these 
methodological developments have been used in recent WRAs is low 
despite the apparent benefits, which may be due to a lack of high-quality 
data availability over large geographical scales. 

Our analysis revealed that 40 studies employed the logarithmic law, 
while another 44 utilized the power law. Five others use linear spline 
interpolation to determine the wind speed at hub height based on two 
wind speeds [80,87,89,151,174], while 103 did not note the method 
used for extrapolating the wind speed. In concurrence with Gualtieri 
[27], the power law is the most used method in the literature, likely due 
to its relative reliability and ease-of-use. Nevertheless, as wind turbine 
design increases the rotor swept area, interactions with the atmospheric 
boundary layer, and the size of the swept rotor area, may necessitate 
using interpolation between two heights as a preferred method. 

3.2.3. Addressing gaps in variability, intermittency, and turbulence 
characterization in wind assessments 

A defining characteristic of wind is its variable nature. For an ac
curate assessment of this variability, several meteorological elements 
must be considered. Two key areas of concern are: first, the phenomenon 
of ‘wind droughts’, extended periods of low winds that can significantly 
impact wind power generation [292]; and second, extreme wind con
ditions [7] such as cyclones [221] or hurricanes [155], which are pro
jected to worsen with climate change [293] and are difficult to model 
due to ongoing spatio-temporal challenges, known as the “spectral gap” 
[294]. Interestingly, few studies delved into an explicit examination of 

the variability or intermittency of wind over extended time frames. Jung 
et al. [145] discerned through trend analysis that wind park expansion is 
increasingly influencing wind resource variability. Similarly, Hallgren 
et al. [54] assessed wind speed intermittency in various Australian re
gions, focusing on periods under the cut-in threshold for wind 
generation. 

The fact that the wind does not blow at a constant rate introduces 
additional complexities. Wind turbulence and gusts, along with high 
frequency fluctuations in wind speed, have a pronounced effect on the 
stability of wind power generation [295]. These were not adequately 
accounted for in the literature, possibly introducing a positive bias in the 
results. Best practice examples include G. Gualtieri [137], who quanti
fied turbulence intensity (I) and gust factor (G) for Tuscany, and Gil Ruiz 
et al. [62], who calculated temporally-correlated turbulence intensity 
over the Caribbean region of Colombia. 

It is equally important to note the temporal variability of wind speed 
and direction across different timescales: inter-annually, intra-annually, 
and daily. We found that temporal variability was only accounted for in 
about 23 % of the studies analyzed. Several studies did perform an 
analysis on intra-annual cycles: for example, Staffell & Pfenninger [52] 
found that capacity factors decrease across the EU by around 44 % from 
winter to summer. A handful also evaluated the diurnal wind cycle: for 
example, Kruyt et al. [60] found that most Swiss weather stations 
exhibited decreased wind speeds in the afternoon due to changes in 
boundary layer conditions. 

Lastly, the length of data used in most studies was insufficient to 
account for longer-term climate effects. Climate is evaluated over a 30- 
year period [296]; however, the median length of wind data used was 
only 13 years. Out of the 114 studies that provided a date range for their 
wind data, only 30 % used data spanning at least 30 years. Conse
quently, longer-term climatic oscillations cannot be identified in most of 
the data. 

3.2.4. Emphasizing the use of diverse scenarios for wind turbine 
characterization and siting 

Turbine characteristics: Regarding specific turbine characteristics, 
the median nominal capacity for all onshore turbines in the literature 
over 2012–2022 was 2.4 MW, with a median hub height of 80 m and a 
rotor diameter of 90 m. Offshore turbines exhibit superior characteris
tics, with a median capacity of 4.8 MW within the same period and 
median hub height and rotor diameters of 100 m and 126 m, respec
tively. These features are graphically represented in Fig. 4 (panels a and 
b) juxtaposed with projections for near-future turbine dimensions in 
2035, according to Wiser et al. [26]. Additionally, it is worth noting that 
the turbine capacity, hub height, and rotor diameters used in the liter
ature generally align with empirical data for operational wind farms for 
each corresponding year [285,297] (see Fig. 4 (panels c and d)). 

Interestingly, the turbine specifications applied in the literature are 
markedly smaller than the projected near-future designs. Given the 
substantial lead time, typically ranging from five to ten years [260], 
between the initial feasibility study and a wind farm’s commissioning, 
using currently valid turbine characteristics in an WRA could lead to 
significant underestimation of the generation capacity for the study 
area. In this context, employing near-future turbine characteristic pro
jections, as seen in Ryberg et al. [48], can be considered as the best 

Table 8 
Common methods of vertical wind extrapolation in the literature, their standard formula, and required inputs.  

Name Formula Requires Reference 

Logarithmic law 
v(z2) = v(z1)

ln(z2/z0)

ln(z1/z0)

z0 , roughness length [27,287] 

Power law 
v(z2) = v(z1)

(z2

z1

)α α, Hellman’s wind shear exponent [27,288] 

Spline Interpolation v(z) = a(z − z1)
3
+ b(z − z2)

2
+ c(z − z1)+ d, 

for z1 ≤ z ≤ z2 and z2 ≤ z ≤ z3 

a, b, c, d, coeffcients such that v(z) and its 1st and 2nd derivatives are continuous at z = z2 [289]  
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practice. Despite the potential overestimations in generation capacity 
for the current turbine set, by the time of the farm’s construction, tur
bines with significantly improved performance are likely to be available 
[26]. 

It is important that the selected turbine used in a WRA correspond to 
the characteristic wind speeds and intensities of the study area, as 
capital expenditures are influenced by hub height. Choosing an inap
propriate turbine model would lead to results with limited practical 
applicability [212]. Thus, the use of International Electrotechnical 
Commission (IEC) standards (see Table 9) for turbine selection can be 
considered a best practice. Additionally, our analysis revealed that 45 % 

of the studies employed a single turbine model in their analysis, while 
only 27 % considered a broader scope of more than five turbine models. 
Adopting a variety of turbine models can be considered a best practice, 
as it yields a more diverse and dynamic set of results rather than a single, 
static result which may be over- or underestimated if the incorrect tur
bine model was selected. 

Best practice examples include Pryor and Berthelmie [104], who 
developed a global atlas of extreme winds, finding that almost 4 % of 
grid cells excluded Class III turbines. Islam et al. [130] classified two 
sites on the Bangladeshi coast as wind class S, which then guided their 
selection of turbine models to employ in the technical analysis. Satymov 
et al. [212] employed power curves of six turbines from all three classes 
to estimate capital expenditures, finding Class III as the most economi
cally viable for most land, while Class II was optimal along coastlines. 
Additionally, their study indicated that the full load hours of turbines 
could be increased by up to 20 % in most regions by optimizing turbine 
selection using IEC wind classes. Finally, Rodriguez et al. [127] pro
posed a novel method for estimating wind resource errors, aligning with 
the IEC 61,400–12–1 standard. 

Turbine siting: Turbine placement is typically quantified as 
deployment density, defined as the total MW potential wind power ca
pacity divided by the total size of the wind farm or region, usually 
expressed in MW per km2. The mean capacity density reported in the 
literature is 5.6 MW/km2, with a median of 4.95 MW/km2. Corrobo
rating the findings of Hedenus et al. [14], our review also reveals an 
overestimation of deployment density in WRAs, considering that the 
average deployment density in real-world municipalities seldom sur
passes 0.5 MW/km2, with infrequent exceptions exceeding 1.5 MW/km2 

Fig. 4. Panel detailing the median characteristics of a) onshore and b) offshore wind turbines as presented in the literature versus near-future (2035) designs [26], 
including hub height, turbine capacity, and rotor diameter. Panels c) and d) compare the nominal capacity and hub heights for onshore and offshore turbines, 
respectively, from the literature against the US Department of Energy (DOE)’s data [285,297] for turbine installations in the corresponding years. 

Table 9 
The International Electrotechnical Commission (IEC) Standard 611,400–1:2019 
[298] for Wind Turbine Classes. The standard categorizes turbines into three 
classes based on operable wind speeds and turbulence intensity. The table below 
describes the reference wind speed and average wind speed as well as turbulence 
intensity for Class I, II and III turbines. These are suited to a specific average 
wind speed (Vave) and a maximum 50-year extreme speed (Vref). Class S is 
designed for site-specific conditions. Iref denotes the reference turbulence in
tensity in% at the site.  

Wind Class I II III S 

Vave (m/s) 10 8,5 7,5 Site-specific 
Vref (m/s) 50 42,5 37,5 

tropical (m/s) 57 57 57 
Iref A+ 18% 

A 16 % 
B 14 % 
C 12 %  
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[14]. In fact, Hedenus et al. [14] find a median deployment density of 
only 0.077 MW/km2 for onshore municipalities, indicating that the 
median density in current WRAs is significantly greater than in real-life. 
In contrast, Enevoldsen & Jacobson, in contrast, report a much higher 
mean installed density for European wind farms: 19.8 MW/km2 onshore 
and 7.2 MW/km2 offshore [15]. However, these larger figures are inside 
the wind farm itself, rather than for the entire study region. Further, 
such high deployment density values greatly reduce the overall effi
ciency of the wind farm [173]. Occasionally, deployment density is 
conveyed as the number of turbines per square kilometer. The turbine 
density exhibited greater variation in offshore wind farms (0.05 to 2 
turbines per km2) compared to onshore installations (1 to 2 turbines per 
km2). 

In WRA simulation software, there are two methodologies utilized 
for turbine siting. Most studies implement a simple deployment density 
value across the available land area, typically estimated by assuming an 
even distribution of turbines over the available land based on with 
spacings ranging from 4 – 16 rotor diameters (median 10) in the pre
vailing wind direction and 3 – 16 rotor diameters (median 5) in the 
crosswind direction. This staggered placement of turbines aims to 
mitigate the impact of turbulence and wake effects on wind power 
generation. The remainder either simulate a turbine at sites where wind 
observations have been taken, or use more complex software to 
parameterize turbines, accounting for the prevailing wind and rotor 
diameter of the selected turbine model. It is worth mentioning that the 
approach to parameterize turbines is significantly more computationally 
demanding, hence only a handful of studies employ this method (e.g. 
[35,48,101,173,175,218,223]). 

Despite being computationally straightforward and more reliable 
than the use of a simplistic deployment density value, this method re
mains somewhat rudimentary as it does not fully account for the 
complexity of wake effects, which are significantly influenced by wind 
speed, turbine characteristics and wind farm size (see Section 3.2.5). A 
minority of studies deployed an optimization solver for determining the 
optimum distance between turbines [141,181,190], while some others 
explored various spacing scenarios [93,101]. Nevertheless, as with the 
selection of land exclusions and turbine characteristics, most studies 
employed a static approach to turbine siting, rather than using multiple 
scenarios. 

3.2.5. Integrating wake effects and tropospheric kinetic energy loss in large- 
scale wind farm simulations 

Wake effects within wind farms have been extensively studied, given 
their significant impact on energy production efficiency [299,300]. 
These phenomena, primarily characterized by downwind velocity defi
cits and enhanced turbulence, are highly dependent on atmospheric 
conditions such as wind speed, temperature, and atmospheric stability. 
Traditional approaches to modelling wake effects include the Jensen 
model [301] and eddy viscosity models [302]. In recent years, a variety 
of modelling methodologies have been employed, including fluid dy
namics simulations within NWP models like the WRF-ARW [303,304], 
as well as modern machine learning applications [305]. Moreover, the 
development of open-source software like PyWake [306] offers 
easy-to-use implementations of wake simulations within WRA 
workflows. 

The pronounced rise in computing power, particularly through the 
application of advanced GPUs [307], has made it feasible to simulate 
wake effects in greater detail and over larger domains. However, our 
analysis showed that the majority of WRAs still employ a simplified 
process by applying a flat reduction factor to account for wake losses 
within wind farms. Typically, this is referred to as array efficiency, and 
accounts for additional losses such as electrical loss over the whole wind 
farm. In the literature, the median value for array efficiency was 0.88, 
which underrepresents the actual losses from wakes, which vary 
temporally in a range of around 10 % [308] -to 40 % [309]. While 
computationally expedient, the use of such a simplistic loss factor 

overlooks important interactions within the wind farm and implies that 
a significant portion of WRAs in the literature may provide over
estimated potentials. Hence, the adoption of more comprehensive wake 
modelling approaches is important for improving the accuracy of WRAs. 

The development of large wind farms, particularly those exceeding 
100 km2 [175], has revealed unique complexities in wind energy dy
namics, characterized by large-scale wake effects, which can extend up 
to 70 km downwind from a large wind farm [163]. These dynamics are 
especially apparent in WRAs examining a study area of national scale or 
greater, or when employing a relatively high capacity density above 
around 1 MW/km2 [173]. 

The complexities of these dynamics stem from the interplay between 
horizontal and vertical kinetic energy influx, which drives the electricity 
generation of a wind farm. At small scales, the available energy for the 
turbine is horizontal kinetic energy, which is converted to heat, me
chanical energy, and turbulent kinetic energy. At larger scales, however, 
the wind farm depletes this horizontal energy, and thus kinetic energy 
must be replenished by vertical downflux from the lower levels of the 
troposphere above the hub height, as well as inflow from below the hub 
height [179]. The efficiency of this replenishment is intrinsically linked 
to meteorological aspects including atmospheric stability, prevailing 
weather conditions, and changes in wind speed and direction [76,163, 
173]. 

Further, surface drag – attributable to local geographical features – 
similarly converts kinetic energy to heat and turbulent kinetic energy, 
reducing the available energy for downwind turbines. This large-scale 
extraction of kinetic energy from the lower levels of the planetary 
boundary layer (PBL), illustrated in Fig. 5, can result in considerable 
reductions in wind speeds at higher levels, increasing mechanical mix
ing and increasing local temperatures [175]. At sufficient scales, these 
effects extend to the global scale, prompting changes in circulation 
patterns such as a poleward shift of the Hadley Cell [99]. 

Finally, these effects have implications both for turbines located 
within a large wind farm and for turbines in nearby, downwind farms. 
Within a wind farm, a loss of wind speed up to 2.5 m/s downwind is 
possible [163] and at a high capacity density of 2.8 MW/km2 or above, 
the internal turbine capacity factor is halved with a wind farm length of 
82 km [93]. The concept of ‘transitional scales’ [76] refers to the scale of 
wind farms at which the turbine performance is affected more by up
stream wind farms than by other local turbines. The transitional length 
is dependent on the stability of the planetary boundary layer but can 
result in significant capacity factor loss in nearby farms [163]. 

With these complex interactions, increased research focus is aimed at 
exploring the impacts of large-scale kinetic energy extraction on the 
maximum geophysical potential for wind energy production [99-101, 
173,175,179]. Jacobson & Archer refer to this concept as the “saturation 
wind power potential” [179] and employ a global circulation model to 
calculate the maximum extractable wind power at 100 m. By parame
terising wind turbines under various power density scenarios, simu
lating wind generation over numerous wind farms, and accounting for 
electricity and kinetic energy losses, they calculate a maximum global 
potential wind power of 253 TW, with 72 TW over land, excluding 
Antarctica and a further 8 TW over the near-shore ocean. 

Further studies have estimated the maximum energy that can be 
extracted from the atmosphere by wind farms at expansive geographical 
scales. These studies employ atmospheric models, notably the WRF 
model [310] and the CESM v3.5 model [311] to parameterize wind 
turbines and account for the complex interactions with atmospheric 
circulation discussed above. The studies suggest relatively low limits, 
ranging from 1 to 3 W/m2 [101,175] for onshore, and up to 6.7 W/m2 
for very large offshore wind farm installations [100]. However, these 
studies do not consider additional technical considerations (like array 
losses and transport/distribution losses), land eligibility assessments, 
and do not provide an overall estimate of installable capacity or po
tential generation (as in Archer & Jacobson [57]). Further, the scale of 
the wind farms is exceedingly high, far larger than what would be 
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constructed in the foreseeable future. Analysis of real-world data from 
wind operators in Europe [15] indicate that the mean output power 
density from currently installed onshore wind farms is much higher 
(6.64 W/m2) for onshore farms, and within the estimated range (2.94 
W/m2) for offshore farms. 

Given these complexities and the substantial effects on potential 
power generation at large scales, there is a pressing need for the 

increased adoption of advanced simulation methods that account for 
wake effects and kinetic energy extraction. As such, and considering the 
heterogenous approach to WRAs in general, the use of various datasets, 
differences in turbine characteristics and siting procedures, and addi
tional factors outlined above, the results of the studies we analyzed show 
a high degree of variability, as illustrated in Fig. 6. 

Fig. 5. Schematic diagram illustrating the energy flows and changes in effective wind speed over large areas including mulitple wind farms, and the diminishing 
effect on kinetic energy replenishment from the free troposphere. High wind speed is illustrated in dark blue, with lighter shades indicated reduced velocity. Energy 
flow is illustrated in yellow.Adapted from Kleidon & Miller [93]. 

Fig. 6. Heatmap showing capacity factors calculated for 6 continental regions (onshore wind generation) from the literature (a), compared to the median values for 
national-scale studies in each region (b) and data from actual wind farms (c) for Australia [312], Europe [313], the USA [285] and global mean [314,315]. The figure 
highlights the heterogeneity of results arising from use of different datasets and methodologies. 
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3.3. Encouraging reproducibility in WRAs through open data and code 
sharing 

3.3.1. Open data is essential for reproducibility 
WRAs are multi-dimensional and complex, requiring multiple data 

inputs, including: wind, climate, topographic, environmental, eco
nomic, and land exclusion data, to name only a few [35]. Of all the data 
types, wind data is arguably the most consequential for WRA outcomes 
due to the cubic relationship between wind speed and power. Major 
sources for wind data are illustrated in Table 10. These data include: 
reanalysis datasets (e.g. ERA-5 [316] or MERRA-2 [206]), which 
combine multiple data sources such as observations from weather sta
tions with numerical weather models meteorological data; observation 
data from weather stations, satellites, LiDAR, buoys, and weather bal
loons; aggregated wind atlases (e.g. Global Wind Atlas [205]), and nu
merical weather prediction (NWP) models (e.g. Weather Research & 
Forecasting Model [303]), which mathematically model the atmosphere 
using empirical equations to describe fluid flows, thermodynamics and 
radiative transfers [317]. Rarely, climate models such as the COS
MO–CLM [318] or the CMIP6 model ensemble [319] are utilized. 

In WRAs targeting current or imminent future conditions, reanalysis 
data are generally favoured over climate data as the latter often exhibit 
diminished accuracy [320,321] and a coarser spatial resolution [319]. 
Notably, while high-resolution climate datasets are available (e.g. 
HighResMIP [322]), we did not encounter any WRA using them for the 
analysis. 

Although 80 % of the studies use open wind data, the methodology 
for processing the data (e.g., handling missing data, selecting the 
appropriate coordinate reference system) is documented in full by only 
5 % of the articles ([52,125,130,173,175,182,186,206,207,221]). As an 
example, the methodology for vertical extrapolation of wind speed is 
commonly described, but details on the horizontal interpolation pro
cesses are sparse. Around a third of the studies provide a visual 

flowchart of the methodology, which often includes several data pro
cessing steps. Few studies disclose the version of the data used, a crucial 
element for reproducibility. Historically, access to certain types of wind 
data (for example, SCADA data) has been limited due to costs and pro
prietary rights. Recently, more open-source SCADA datasets have 
become available [327], adding valuable inputs for comprehensive 
open-source analysis Fig. 7. 

The scarcity of studies which make their data downloadable is 
another area of concern, as illustrated in Fig. 7. Of the studies analyzed, 
only 16 % provide a statement on data availability in the article; 10 % 
make the output data available for download, and another 7 % offer the 
data on request (refer to the Excel file in the Supplementary Materials for 
the exact studies). The FAIR principles for scientific data stewardship 
and management [328] call for data that is findable, accessible, inter
operable and reusable. Thus, over 83 % of the studies do not provide 
data that is findable and accessible, and therefore violate the FAIR 
principles. 

3.3.2. Advocating the use of open-source software 
All WRAs utilize geographical information software (GIS) for land 

eligibility assessments and simulation software to simulate wind power 
generation. In many instances, a combination of programs is employed. 
However, only 43 % of the studies provide an explicit description of the 
software used in the analysis. Some do reference a software program but 
do not mention the program’s name. We identify several common 
software tools used in the literature, summarized in Table 11 and 
Table 12. Specific references to each program can be found in the sup
plementary Excel table and therefore, in the following tables, we only 
reference the number of mentions for each software program. 

Our analysis reveals two categories of proprietary software used in 
WRAs: GIS software, such as ArcGIS [329], QGIS [330] and PostGIS 
[331], and wind simulation tools (see Table 11). GIS software is pre
dominantly used for applying land category exclusions and identifying 

Table 10 
Overview of widely cited data sources in WRA literature including developers, open-source availability, and spatial-temporal resolutions.  

Name Developer Open- 
source 

Mentions in 192 WRA studies Spatial 
resolution  

A - Reanalysis data      
ERA-5 

[316] 
ECMWF / Copernicus Climate 
Change Service 

Yes 23 
[61,62,65,73,75,77,85,87,89,98,104,139,150,152-154,157,158, 
161,164,198,203,224] 

0.25 1 

ERA-Interim 
[268] 

ECMWF / Copernicus Climate 
Change Service 

Yes 16 
[53,57,80,82,86,88,96,98,103,122,138,166,211,215,227,323] 

~0.7 6 

MERRA [275] NASA Global Modelling and 
Assimilation Office (GMAO) 

Yes 15 
[48,52-54,58,64,94,101,115,124,136,176-178,223] 

0.5 × 0.625 1 

MERRA-2 [206] NASA Global Modelling and 
Assimilation Office (GMAO) 

Yes 11 
[52,55,61,74,77,129,135,143,157,183,202] 

0.5 × 0.625 1 

NCEP models, (e.g. NCEP- 
NCAR [324]) 

National Centers for 
Environmental Prediction 
(NCEP) 

Yes 8 
[51,53,86,90,117,155,160,174] 

2.5 × 2.5 6 

B - Meteorological stations      
Meteorological stations, 

satellites, and remote- 
sensing data 

Government data or 
meteorological offices. 

No 68 
[53,56,59,60,62,65,66,68,69,71,72,75,77,81,82,84,92,95-98,102, 
107,109,116,119,125,130,131,134-136,142,144,148-150,155,162, 
163,168-172,176,184-186,188,191,194-196,198,200,205-207,209, 
210,213,213,218,219,221,236,325] 

NA Varied 

C - Numerical weather 
prediction (NWP) models      

Weather Research Forecasting 
(WRF) model [310] 

NCAR, NOAA, AFWA Yes 15 
[53,70,76,80,82,95,101,102,137,150,155,160,162,173,175] 

Varied Varied – 
10 s to 1hr 

Wind atlases      
Global Wind Atlas [205] Technical University of 

Denmark (DTU) 
Yes 17 

[34,48,105,112,118,143,167,177,178,180,203,204,225,231,238, 
244] 

~0.003 NA 

National / industry wind 
atlases 

Public or private sector 
research departments 

Some 12 
[57,63,69,85,133,181,187,190,216,217,233,235] 

Varied NA 

D - Climate models      
Climate models (e.g. 

COSMO–CLM [326]) 
Public or private sector 
research departments 

Some 13 
[61,75,78,89,99,100,103,121,141,156,163,166,170] 

Varied Varied  
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suitable locations for siting. Wind simulation tools cater to a variety of 
applications within wind farm power generation simulation. For 
example, predicting wind power production based on wind turbine 
specifications and wind data and calculation of wind farm efficiency 
[332], or using computational fluid dynamics to simulate wind flow 
over complex terrains [333]. 

Issues relating to the use of proprietary, paid software in research 
have been apparent at least since 2012 [344], mainly due to its limita
tions in allowing for reproducibility in scientific research. Compara
tively, open-source software offers a broad range of benefits. Typically, 
these are smaller-scale programs developed by a research institution, 
aiming to execute at least one key process within the WRA. They are free 
to use, although a hidden cost may be associated with learning the 
software, particularly if documentation is insufficient. Moreover, 
open-source software encourages community development and inno
vation, fostering a network of researchers and in some instances, 
furthering the development of standards and benchmarks. 

However, a mere eight of the 195 articles [76,93,102,104,105,139, 

141,226] provide downloadable code, implying that the majority (96 %) 
of studies do not meet the requirements for scientific reproducibility. 
Despite the advantages of open-source software, their usage must be 
more transparent and accessible to improve transparency and repro
ducibility in WRAs. 

4. Discussion and future recommendations 

4.1. Summary of key findings 

The term “wind potential” may refer to one of five definitions which 
are often inconsistently interpreted in the literature, making cross-study 
comparisons challenging. Most studies focus on technical potentials, 
which include land eligibility assessments and wind generation simu
lations. While these estimates are useful, they, along with techno- 
economic potentials, neglect important market, social, and political 
barriers to wind power development. Global and continental-scale 
technical potential estimates vary widely due to differences in data 

Fig. 7. Data availability for 195 articles which used data in their analyses. a) shows the proportion of open data used in the analyses, while b) shows the proportion 
of studies which made their calculated data available for download. 

Table 11 
Named proprietary software in the publications analysed for this literature review.  

Program name Developer Mentions in 192 WRA studies Open 
source 

Programming 
language 

A - GIS software for spatial analysis  
ArcGIS 

[329] 
ESRI 21 

[64,109,112,113,138,145,150,151,159,168,172,176,183,186,187,199,211, 
216,224,233,244] 

No Multiple 

QGIS 
[330] 

QGIS Development Team 2 
[217,238] 

Yes C++, python 

PostGIS [331] Multiple 1 [168] Yes C 
B - Wind resource simulation software   
WaSP [332] DTU Wind Energy 13 

[46,86,95,102,130,133,136,137,143,160,185,196,218] 
No Not available 

WindSim [333] WindSim AS 2 [64,160] No Not available 
Meteodyn WT [334] Meteodyn 1 [136] No Not available 
WindPRO [335] EMD International A/S 1 [136] No Not available 
FirstLook [336] 3Tier 1 [72] No Not available 
RIAM-COMPACT  

[337] 
RIAM Computational Fluid 
Dynamics 

1 [72] No Not available 

C - Programming environments 
MATLAB [338] MathWorks 6 

[67,122,135,138,145,236] 
MATLAB Not available  
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sources, assumptions surrounding technical characteristics of turbines 
and wind farm layouts, and methods for assessing land-use eligibility. 
Onshore wind generally shows a higher overall potential than offshore, 
despite the greater offshore wind speeds. Yet, large-scale WRA studies 
show a bias toward the Northern Hemisphere, overlooking regions with 
significant potential such as Southern and Northern Africa, and South 
America. 

Innovative methods for capturing non-technical aspects and esti
mating feasible potentials, include multi-criteria decision analysis 
(MCDA) methods, such as analytical hierarchy process (AHP) and fuzzy- 
TOPSIS, which offer promising results. However, practical challenges 
remain, including computational demands and complexities regarding 
assignment of weights to various criteria. 

High quality wind data is essential for the accuracy of WRAs. While 
reanalysis data is favored, there is significant variability in wind data 
sources in the literature. All available wind datasets have limitations, 
with significant discrepancies observed across common datasets. 
Despite the clear benefit of using multiple sources, most studies continue 
to rely on a single wind dataset and only a fifth of studies performed 
validation on the input data. 

In terms of methodological gaps, as turbine hub heights continue to 
increase, the choice of wind speed extrapolation methods gain impor
tance. While the power law remains the most popular, its limitations 
become more apparent at higher hub heights. Advanced methods, such 
as least squares fitting, remain rare in the literature, despite their ben
efits. Additionally, the variability of wind poses challenges for accurate 
WRAs. Despite the importance of phenomena such as wind droughts, 
turbulence, and extreme conditions, these aspects are often underrep
resented, and most studies employ data over periods too short to capture 
the region’s climatology and identify long-term trends. 

A further point of concern is that the literature tends to use turbine 
characteristics that do not fully reflect the ongoing improvements in 
performance. Best practices suggest modelling near-future turbines and 
considering a range of models, while almost half the studies employ a 
single turbine model and employ optimistic power density factors to 
model turbine placement, which may lead to overestimated potentials. 
Finally, modelling the effects of wakes and kinetic energy extraction are 
crucial for accurate estimates in large-scale WRAs, especially for farms 

exceeding 100km2 or with high turbine densities. At large scales, the use 
of simple loss factors is not sufficient to capture the complex dynamics of 
wind flow within the wind farm. However, there are significant 
computational barriers to performing such simulations at high 
resolutions. 

Regarding reproducibility of results, while most studies employ open 
data sources, only a small fraction fully document their processing 
methodology. This lack of transparency extends to the principles of FAIR 
data management, as over 83 % of studies do not make their output data 
available. While GIS and simulation software are integral to WRAs, only 
43 % of the studies in our review mention the software they employed. 
Furthermore, the ongoing use of proprietary software poses challenges 
to reproducibility, and open-source alternatives exist. Alarmingly, only 
4 % of studies provide downloadable code, hindering the capacity for 
scientific reproducibility. 

4.2. Limitations 

We can, however, note several limitations to our study. While the 
systematic approach was designed to capture the full breadth of the 
field, it is possible that we overlooked significant studies that were not 
captured by our literature search, or that were outside of the evaluation 
period (e.g. [290,291,345]). The databases we searched (see Appendix 
Table 13), SCOPUS and Web of Science, though extensive, have their 
own indexing criteria, which may introduce a selection bias. We opted to 
avoid performing a rigorous quality assessment of the papers before 
including them in our review, to present a clear picture of the field that is 
not limited to the papers illustrating best practices. However, this could 
affect the reliability of the results. Furthermore, results from conference 
papers, unpublished studies and grey literature were not included in our 
analysis. Finally, our paper only encompasses literature published be
tween 2012 and 2022, necessitating periodic future updates to remain 
current. Nonetheless, despite these constraints, we are confident that 
our review offers a thorough evaluation of the current state of wind 
resource assessment research, and that the results can be applied across 
the field. 

Table 12 
Open-source software developed by research institutes used in the literature analysed in the literature review. Where the model was used only once, the reference is 
included in the “Model name” column. Where the model is used more than once, or is not developed in study that employs it, the additional associated references can be 
found in the “Mentions” column.  

Model name Developer Mentions in 192 
studies 

Programming 
language 

Description 

aiRthermo [339] AI4CEE Lab of the National 
Technical University of Athens 

1 R A package for computing thermodynamics of atmospheric 
processes. 

atlite [139] PyPSA / atlite Team 1 Python A package for calculating technical renewable power 
potentials and time series. 

GATOR-GCMM 
[265] 

Jacobson, M. 2 [179] Unavailable Global air pollution and weather forecast model built at 
University of Stanford 

Geospatial Land Availability for 
Energy Systems (GLAES) [34] 

Ryberg, S., Robinus, M., & 
Stolten, D. 

4 
[35,48,223] 

Python A package for conducting land eligibility assessments for 
energy system analyses. 

GlobalEnergyGIS [340] Mattsson, N. 1 Julia A package for generating input data to use in energy 
system models. 

KEBA model of the atmosphere [93] Kleidon, A, & Miller, L. 1 Microsoft Excel A simulation tool for calculating the effect of large wind 
farms on kinetic energy in the troposphere. 

Renewable Energy Potential (reV) 
Model [226] 

National Renewable Energy 
Laboratory (NREL) 

3 
[192,232] 

Python A toolkit for simulating renewable energy generation, 
LCOEs, energy supply curves and geospatial analysis. 

RESKit [48] Ryberg, et al. 1 Python A toolkit to help generate renewable energy generation 
time-series for energy systems analysis 

RETscreen Clean Energy Management 
Software [341] 

Government of Canada 2 
[111,127] 

Unavailable Management software for assessing the viability of clean 
energy projects and investments. 

Systems Advisor Model (SAM) [342] National Renewable Energy 
Laboratory (NREL) 

1 [192] C++ Performance and financial model for facilitating decision 
making in renewable energy projects. 

Virtual Wind Farm Model / 
Renewables.Ninja [52] 

Staffell, I., & Pfenninger, S. 1 Python, MATLAB A simulation tool for turbine power output based on 
MERRA data. 

WindCurves [343] Bokde, N. & Feijoo, A. 1 [142] R A tool to fit and compare wind turbine power curves with 
successful fitting techniques.  
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4.3. Discussion and future recommendations 

Our review highlights the heterogeneity in the methodologies used 
across WRAs. The absence of an explicitly defined workflow and stan
dardized processes is a significant issue in the reliability of outcomes. 
The consideration of geographically- and income-dependent socio-po
litical barriers to development in WRAs, as opposed to merely assessing 
the technical or economic potential, is essential for providing results that 
can spur informed discussion in the energy field. In this regard, nations 
in the Northern Hemisphere dominate the literature focus and there is an 
urgent need to include a wider geographical extend, especially consid
ering the high potential for renewables in lower-income countries. 
However, even the incorporation of complex, ambiguous concerns in 
WRAs does not guarantee results that have relevance outside the aca
demic sphere. As an example, despite the progressive adoption of tools 
such as multi-criteria decision analysis models and neural networks, 
most studies still employ simplistic methods for assuming the placement 
of turbines, with significantly higher capacity densities than seen in real- 
life – thereby producing overly optimistic results. 

The reproducibility issues in WRAs also demands immediate atten
tion. While the utilization of open data is promising, the literature often 
lacks comprehensive documentation of processing methodologies, 
hampering its potential to serve as a beneficial resource. Furthermore, 
the minor percentage of studies providing downloadable data and code 
starkly contrasts with the scientific community’s push towards open 
access and reproducibility. Addressing these deficiencies will enhance 
scientific credibility and foster trust and collaboration in the broader 
community. 

In this review, we define accuracy as the ability of a WRA to capture 
the actual or true wind generation potential of a region. The method
ology involves progressively limiting the available land for development 
by performing land category exclusions, applying a capacity density 
value, or using a software program to place wind turbines with specific 
characteristics in the remaining area, and then simulating the wind and 
other meteorological conditions, thereby ascertaining the turbines’ ca
pacity factor and full load hours. While improvements have been made 
in terms of both land exclusions and simulations, the accuracy of WRAs 
can be further improved by employing multiple scenarios for turbine 
characteristics and siting regimes, validating both input data and results, 
employing sensitivity analyses, and better accounting for complex 
phenomena such as the effects of large-scale wakes on downwind farms. 
With wind energy’s promising trajectory, ensuring high-quality WRAs is 
essential to set the stage for informed decision-making and to provide 
actionable insights. 

Based on our findings and the above discussion, we can outline the 
following suggestions for improvements in state-of-the-art WRAs:  

• Feasible wind potential assessments attempt to account for socio- 
political barriers to development in addition to technical and eco
nomic aspects, to produce results that are as close to real-world wind 
potentials as possible. The complexity of this modelling increases 
when weighing different objectives, which involves subjective con
siderations. The adoption of novel methods including machine 
learning algorithms and multi-criteria decision analysis tools are 
promising paths, but more focus is needed in this area. WRAs should 
shift away from technical and techno-economic assessments to better 
incorporate socio-political barriers which show significant 
geographical disparities. 

• The use of multiple scenarios, sensitivity analyses, and valida
tion of both input data and results against real-world observations 
is essential, given the heterogeneity of data and approaches used in 
WRAs. By acknowledging and explicitly addressing ambiguity and 
uncertainties, WRAs can produce outputs that are more robust and 
actionable in the real world. Especially important is the use of mul
tiple siting scenarios since the literature shows a significantly greater 
capacity density than in real-world wind farms. Validation of results 

must be extended the costs and impacts of wind development, not 
solely the potential output.  

• The is an urgent need to promote the open access to research 
resources such as processed data and code used in the WRA, to 
ensure accessibility and reproducibility of the results in accordance 
with good scientific practices. It is concerning that only 10 % of the 
studies provided accessible data, and only 4 % offer downloadable 
code. Adhering to the FAIR principles of data management and 
stewardship is essential for upholding scientific rigor.  

• Turbine model characterization and siting techniques can more 
accurately represent real-world conditions when a selection of near- 
future turbine models is used, and more detailed justifications for 
turbine siting methods are given.  

• Given the increasingly important role of large-scale wake effects 
for large wind farms, advanced simulations of complex phenom
ena, within and between wind farms, will be indispensable for 
enhancing the accuracy of WRAs. Our analysis reveals that current 
methods for accounting for wake effects at large scales may be 
oversimplified, leading to potential overestimations.  

• Resource assessments must better address underrepresented 
regions, particularly in the Southern Hemisphere, where there is 
currently a dearth of research. Notably, only 9 % of the 195 studies 
focused specifically on Southern Hemisphere nations. There were an 
additional six continent-scale African analyses, only two of which 
were led by authors with African affiliations.  

• Finally, we advocate for a standardized workflow approach to 
manage the tasks contained within WRAs. Since all WRAs perform a 
general sequence of tasks in a specific order, there is room for 
developing an open-source workflow management system, to help 
manage the heterogeneity of approaches, and ensure standards and 
best-practices are upheld. 
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Appendix  

Table 13 
Search terms employed for the literature review search on SCOPUS and Web of Science Core. We include all “article” type publications between 2012 and 2022.  

SCOPUS Web of Science Core 

Search term Results Search term Results 

TITLE-ABS-KEY (wind AND (power OR generation OR energy) AND (evaluat* 
OR assess* OR analy* OR pot* OR plan* OR simul* OR optimi* OR model*) 

200′783 TS=(wind AND (power OR generation OR energy) AND (evaluat* OR assess* 
OR analy* OR pot* OR plan* OR simul* OR optimi* OR model*)) 

161′491 

AND TITLE ("wind power" OR "wind energy" OR "wind resource" AND 
(evaluat* OR assess* OR analy* OR pot* OR plan* OR simul* OR optimi* 
OR model)) 

11′427 AND TI = ("wind power" OR "wind energy" OR "wind resource" AND 
(evaluat* OR assess* OR analy* OR pot* OR plan* OR simul* OR optimi* OR 
model)) 

16′968 

AND TITLE-ABS-KEY (potential OR locat*) AND (generation OR cost OR lcoe 
OR econom*)) 

1′859 AND TS=(potential OR locat*) AND (generation OR cost OR lcoe OR 
econom*)) 

2′458 

AND SRCTYPE (j) AND PUBYEAR > 2012 AND (LIMIT-TO (DOCTYPE, "ar")) 1′132 AND DT=(Article) + Timespan: 2012–01–01 to 2022–10–01 (Index Date) 1′300 
TOTAL 1′132  1′300   

Table 14 
Distribution of the 195 reviewed papers by journal, including the 2022–2023 journal impact factor and the share of total studies. Only those journals with five or 
more studies are included in this table.  

Journal Impact Factor (2022–2023) Studies Share of total 195 studies [%] 

Renewable Energy 8.634 24 12 
Energy 8.857 18 9 
Renewable & Sustainable Energy Reviews 16.799 13 7 
Energies 3.252 13 7 
Applied Energy 11.446 10 5 
Energy Policy 7.576 8 4 
Journal of Cleaner Production 11.072 5 3 
Sustainable Energy Technologies and Assessments 7.632 5 3   

Table 15 
The 20 most relevant studies by global citations in the field of large-scale wind resource potential estimations (06.06.2023).  

Reference Title Journal Cited 
by2 

Staffell I., Pfenninger S., 2016 [52] Using bias-corrected reanalysis to simulate current and future wind power output Energy 657 
Staffell I., Green R., 2014 [115] How does wind farm performance decline with age? Renewable Energy 313 
Carvalho D., et al., 2014 [53] WRF wind simulation and wind energy production estimates forced by different reanalyses: 

Comparison with observed data for Portugal 
Applied Energy 191 

Zheng C.-W., Pan J., Li J.-X., 2013 
[79] 

Assessing the China Sea wind energy and wave energy resources from 1988 to 2009 Ocean Engineering 183 

He G., Kammen D.M., 2014 [168] Where, when and how much wind is available? A provincial-scale wind resource assessment 
for China 

Energy Policy 135 

Mentis D., et al., 2015 [113] Assessing the technical wind energy potential in Africa a GIS-based approach Renewable Energy 126 
Mahdy M., Bahaj A.S., 2018 [233] Multi criteria decision analysis for offshore wind energy potential in Egypt Renewable Energy 113 
Cavazzi S., Dutton A.G., 2016 [216] An Offshore Wind Energy Geographic Information System (OWE-GIS) for assessment of the 

UK’s offshore wind energy potential 
Renewable Energy 107 

Grassi S., Chokani N., Abhari R.S., 
2012 [193] 

Large scale technical and economical assessment of wind energy potential with a GIS tool: 
Case study Iowa 

Energy Policy 101 

Dupont, E., Koppelaar, R., Jeanmart, 
H., 2018 [227] 

Global available wind energy with physical and energy return on investment constraints Applied Energy 99 

Marvel, K., Kravitz, B., Caldeira, K., 
2013 [99] 

Geophysical limits to global wind power Nature Climate Change 96 

Eurek, K., et al., 2017 [174] An improved global wind resource estimate for integrated assessment models Energy Economics 94 
Wu, Y., et al., 2020 

[234] 
A decision framework of offshore wind power station site selection using a PROMETHEE 
method under intuitionistic fuzzy environment: A case in China 

Ocean and Coastal Management 89 

McKenna, R., Hollnaicher, S., 
Fichtner, W., 2014 [186] 

Cost-potential curves for onshore wind energy: A high-resolution analysis for Germany Applied Energy 88 

Mattar, C., Borvarán, D., 2016 [80] Offshore wind power simulation by using WRF in the central coast of Chile Renewable Energy 86 
Siyal, S.H., et al., 2015 [172] Wind energy assessment considering geographic and environmental restrictions in Sweden: A 

GIS-based approach 
Energy 79 

Zhang, J., et al., 2015 [124] Comparison of numerical weather prediction based deterministic and probabilistic wind 
resource assessment methods 

Applied Energy 79 

Adams, A.S., Keith, D.W., 2013 [175] Are global wind power resource estimates overstated? Environmental Research Letters 79 

(continued on next page) 
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Table 15 (continued ) 

Reference Title Journal Cited 
by2 

Mohsin, M., et al., 2019 [208] Economic assessment and ranking of wind power potential using fuzzy-TOPSIS approach Environmental Science and 
Pollution Research 

78 

Khaled M. Bataineh, Doraid Dalalah 
[116] 

Assessment of wind energy potential for selected areas in Jordan Renewable Energy 77  

S According to SCOPUS bibliometric information, June 2023. 

The first step in any wind potential analysis is to conduct a land eligibility assessment, such that the available land area for the development of 
wind power projects is made available for the computer model. Aligning to the findings of Risch et al. [35], we found that this process generally 
proceeded according to a “greenfield” approach, whereby all the land in the region is first assumed to be available, and then land is progressively 
excluded according to the criteria set for the land eligibility assessment. The only other method that we encountered, were cases where the “available 
land area” referred to several sites where wind speed measurements were performed, and thus the final wind power potential was “site-specific” 
instead of an estimate for the entire geographical region (e.g. [125,129,144,205,218]). In contrast, MCDA methods, as illustrated in studies such as 
[75,111,218,227], often diverge from the greenfield approach in that their siting method is not based on a systematic removal of ineligible land. 
Rather, they utilize soft (< 100 %) weightings to evaluate various site selection criteria, to explicitly encapsulate the ambiguity and potential trade-offs 
that are prevalent in real-world siting projects. It is noteworthy that many studies incorporate a hybrid approach by applying “hard” or absolute 
exclusions to certain land categories, and then proceeding with the MCDA approach for the remaining available land area. This approach reflects a 
departure from traditional blanket exclusions to a more comprehensive decision-making paradigm. 

The selection of appropriate exclusion criteria, buffer sizes and the associated datasets is important for accurately quantifying the available land 
area to develop wind projects. These have been reviewed in previous studies (e.g. [7,34,35]), and we therefore do not explore this topic in detail. 
Nevertheless, it is important to mention that there is currently no standardised approach to performing land exclusion analyses – with regards to which 
exclusions to apply, which datasets to use, and what size of buffer to apply around various exclusion criteria. For example, in the literature for onshore 
potentials we reviewed, the maximum height above sea level for excluding turbine construction ranged from 1500 m [202,217] to 4000 m [189,204], 
the buffer around urban and residential areas ranged from 0 m (e.g. [51,117,118,142,192,201]) to 5000 m [202]; and the slope exclusion ranged from 
2,41◦ [168] to 30◦ [203,224]. Similarly, for offshore assessments, the maximum depth of water for constructing wind projects ranged from 20 m [168] 
to 100 m [161], for fixed monopiles, and 150 m [189] and 1000 m [87,174,227,235] for floating constructions. The minimum distance from the 
shoreline ranged from 1 km [218] to 22 km [178,222]; and the setback around oil and gas platforms ranged from 0 m [221] to 7,5 km [235]. 

It is also noteworthy that there exist national and, in some cases like Germany subnational regulations regarding various setback distances – which 
means that a one-size-fits-all approach is not possible for assigning exclusion criteria and setback distances. Often, when buffer regulations are not 
available, proxies are used (e.g. [238]). However, we identified a noticeable lack of clarity in many studies for justifying the selection criteria for 
exclusions, as well as the basis for determining which setback distances to use. In certain cases, the rationale was not communicated at all. 

Complimenting this, as McKenna et al. [7] highlighted, there was a noteworthy scarcity of studies employing sensitivity analyses for various land 
exclusions and setback distances (as seen in, for example, Risch et al. [35]). While a few studies did incorporate different exclusion scenarios, they 
typically did not extend this approach so far as to include a sensitivity analysis. The majority of studies thus relied on a single set of exclusion criteria 
and setback distances, leading to a static set of results. Such results offer limited utility in guiding policy or industry, particularly in light of recent 
results from Hedenus et al. [14], indicating substantial discrepancies between modelled exclusions and those employed in real-world wind farm 
projects. 
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[16] Azevêdo R, Rotela Junior P, Chicco G, Aquila G, Rocha LC, Peruchi R. 
Identification and analysis of impact factors on the economic feasibility of wind 
energy investments. Int J Energy Res 2021;45(3):3671–97. https://doi.org/ 
10.1002/er.6109. 

[17] Nazir MS, Ali N, Bilal M, Iqbal HMN. Potential environmental impacts of wind 
energy development: a global perspective. Curr Opin Environ Sci Health 2020;13: 
85–90. https://doi.org/10.1016/j.coesh.2020.01.002. 

[18] Tasneem Z, et al. An analytical review on the evaluation of wind resource and 
wind turbine for urban application: prospect and challenges. Dev Built Environ 
2020;4:100033. https://doi.org/10.1016/j.dibe.2020.100033. 

[19] Reja RK, et al. A review of the evaluation of urban wind resources: challenges and 
perspectives. Energy Build 2022;257:111781. https://doi.org/10.1016/j. 
enbuild.2021.111781. 

[20] Zwarteveen JW, Figueira C, Zawwar I, Angus A. Barriers and drivers of the global 
imbalance of wind energy diffusion: a meta-analysis from a wind power Original 
Equipment Manufacturer perspective. J Clean Prod 2021;290:125636. https:// 
doi.org/10.1016/j.jclepro.2020.125636. 

T. Pelser et al.                                                                                                                                                                                                                                   

https://www.iea.org/reports/co2-emissions-in-2022
https://www.iea.org/reports/co2-emissions-in-2022
http://10.1017/9781009157926.008
https://www.iea.org/reports/renewables-2022
https://www.iea.org/reports/renewables-2022
https://www.iea.org/reports/world-energy-outlook-2022
https://www.iea.org/reports/world-energy-outlook-2022
https://doi.org/10.1016/j.rser.2016.10.038
https://doi.org/10.1016/j.rser.2016.10.038
https://doi.org/10.1016/j.renene.2021.10.027
https://doi.org/10.1186/s13104-021-05875-3
https://doi.org/10.1186/s13104-021-05875-3
https://doi.org/10.1098/rsta.2020.0210
https://doi.org/10.17226/25303
https://doi.org/10.17226/25303
https://doi.org/10.1063/1.5009948
https://doi.org/10.1016/j.seta.2022.102538
https://doi.org/10.1016/j.seta.2022.102538
https://doi.org/10.1016/j.rser.2012.11.057
https://doi.org/10.1016/j.rser.2022.112813
https://doi.org/10.1016/j.esd.2020.11.004
https://doi.org/10.1002/er.6109
https://doi.org/10.1002/er.6109
https://doi.org/10.1016/j.coesh.2020.01.002
https://doi.org/10.1016/j.dibe.2020.100033
https://doi.org/10.1016/j.enbuild.2021.111781
https://doi.org/10.1016/j.enbuild.2021.111781
https://doi.org/10.1016/j.jclepro.2020.125636
https://doi.org/10.1016/j.jclepro.2020.125636


Advances in Applied Energy 13 (2024) 100158

21

[21] Brown TW, Bischof-Niemz T, Blok K, Breyer C, Lund H, Mathiesen BV. Response 
to “Burden of proof: a comprehensive review of the feasibility of 100% 
renewable-electricity systems. Renew Sustain Energy Rev 2018;92:834–47. 
https://doi.org/10.1016/j.rser.2018.04.113. 

[22] Sánchez-del Rey A, Gil-García IC, García-Cascales MS, Molina-García Á. Online 
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[73] Nefabas KL, Söder L, Mamo M, Olauson J. Modeling of ethiopian wind power 
production using era5 reanalysis data. Energies 2021;14(9). https://doi.org/ 
10.3390/en14092573. 

[74] Ayik A, Ijumba N, Kabiri C, Goffin P. Preliminary wind resource assessment in 
South Sudan using reanalysis data and statistical methods. Renew Sustain Energy 
Rev 2021;138. https://doi.org/10.1016/j.rser.2020.110621. 

[75] Libanda B, Paeth H. Modelling wind speed across Zambia: implications for wind 
energy. Int J Climatol 2023;43(2):772–86. https://doi.org/10.1002/joc.7826. 

[76] Antonini EGA, Caldeira K. Spatial constraints in large-scale expansion of wind 
power plants. Proc Natl Acad Sci USA 2021;118(27). https://doi.org/10.1073/ 
pnas.2103875118. 

[77] Gruber K, Regner P, Wehrle S, Zeyringer M, Schmidt J. Towards global validation 
of wind power simulations: a multi-country assessment of wind power simulation 
from MERRA-2 and ERA-5 reanalyses bias-corrected with the global wind atlas. 
Energy 2022;238. https://doi.org/10.1016/j.energy.2021.121520. 

[78] Yang Y, Javanroodi K, Nik VM. Climate change and renewable energy generation 
in Europe—long-term impact assessment on solar and wind energy using high- 
resolution future climate data and considering climate uncertainties. Energies 
2022;15(1):302. https://doi.org/10.3390/en15010302. 

[79] Zheng CW, Pan J, Li JX. Assessing the China Sea wind energy and wave energy 
resources from 1988 to 2009. Ocean Eng 2013;65:39–48. https://doi.org/ 
10.1016/j.oceaneng.2013.03.006. 

[80] Mattar C, Borvarán D. Offshore wind power simulation by using WRF in the 
central coast of Chile. Renew Energy 2016;94:22–31. https://doi.org/10.1016/j. 
renene.2016.03.005. 

[81] Soukissian TH, Papadopoulos A. Effects of different wind data sources in offshore 
wind power assessment. Renew Energy 2015;77:101–14. https://doi.org/ 
10.1016/j.renene.2014.12.009. 

[82] Lee JA, Doubrawa P, Xue L, Newman AJ, Draxl C, Scott G. Wind resource 
assessment for Alaska’s offshore regions: validation of a 14-year high-resolution 
WRF data set. Energies 2019;12(14). https://doi.org/10.3390/en12142780. 

[83] Aza-Gnandji MR, Fifatin FX, Dubas F, Nounangnonhou TC, Espanet C, Vianou A. 
Investigation on offshore wind energy potential in Benin Republic. Wind 
Engineering 2021;45(1):63–73. https://doi.org/10.1177/0309524×19872768. 

[84] Varghese J, Christy F, Venkattaramana K. Offshore wind energy potential along 
Indian Coast. IJCIET 2018;9(7):1480–6. 

[85] Ibarra-Berastegi G, Ulazia A, Saénz J, González-Rojí SJ. Evaluation of Lebanon’s 
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