001023791 001__ 1023791
001023791 005__ 20250204113811.0
001023791 0247_ $$2doi$$a10.1016/j.neubiorev.2024.105607
001023791 0247_ $$2ISSN$$a0149-7634
001023791 0247_ $$2ISSN$$a1873-7528
001023791 0247_ $$2pmid$$a38428473
001023791 0247_ $$2WOS$$aWOS:001218412000001
001023791 037__ $$aFZJ-2024-01804
001023791 082__ $$a610
001023791 1001_ $$0P:(DE-HGF)0$$aWang, Mengmeng$$b0
001023791 245__ $$aThe common and distinct brain basis associated with adult and adolescent risk-taking behavior: Evidence from the neuroimaging meta-analysis
001023791 260__ $$aAmsterdam [u.a.]$$bElsevier Science$$c2024
001023791 3367_ $$2DRIVER$$aarticle
001023791 3367_ $$2DataCite$$aOutput Types/Journal article
001023791 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1714726120_29383
001023791 3367_ $$2BibTeX$$aARTICLE
001023791 3367_ $$2ORCID$$aJOURNAL_ARTICLE
001023791 3367_ $$00$$2EndNote$$aJournal Article
001023791 520__ $$aRisk-taking is a common, complex, and multidimensional behavior construct that has significant implications for human health and well-being. Previous research has identified the neural mechanisms underlying risk-taking behavior in both adolescents and adults, yet the differences between adolescents' and adults' risk-taking in the brain remain elusive. This study firstly employs a comprehensive meta-analysis approach that includes 73 adult and 20 adolescent whole-brain experiments, incorporating observations from 1986 adults and 789 adolescents obtained from online databases, including Web of Science, PubMed, ScienceDirect, Google Scholar, EBSCO PsycINFO, Scopus, Medline and PsycARTICLES. It then combines functional decoding methods to identify common and distinct brain regions and corresponding psychological processes associated with risk-taking behavior in these two cohorts. The results indicated that the neural bases underlying risk-taking behavior in both age groups are situated within the cognitive control, reward, and sensory networks. Subsequent contrast analysis revealed that adolescents and adults risk-taking engaged frontal pole within the fronto-parietal control network (FPN), but the former recruited more ventrolateral area and the latter recruited more dorsolateral area. Moreover, adolescents' risk-taking evoked brain area activity within the ventral attention network (VAN) and the default mode network (DMN) compared with adults, consistent with the functional decoding analyses. These findings provide new insights into the similarities and disparities of risk-taking neural substrates underlying different age cohorts, supporting future neuroimaging research on the dynamic changes of risk-taking.
001023791 536__ $$0G:(DE-HGF)POF4-5251$$a5251 - Multilevel Brain Organization and Variability (POF4-525)$$cPOF4-525$$fPOF IV$$x0
001023791 536__ $$0G:(DE-HGF)POF4-5253$$a5253 - Neuroimaging (POF4-525)$$cPOF4-525$$fPOF IV$$x1
001023791 588__ $$aDataset connected to CrossRef, Journals: juser.fz-juelich.de
001023791 7001_ $$0P:(DE-HGF)0$$aDeng, Yao$$b1
001023791 7001_ $$0P:(DE-HGF)0$$aLiu, Yingying$$b2
001023791 7001_ $$0P:(DE-HGF)0$$aSuo, Tao$$b3
001023791 7001_ $$0P:(DE-HGF)0$$aGuo, Bowen$$b4
001023791 7001_ $$0P:(DE-Juel1)131678$$aEickhoff, Simon B.$$b5
001023791 7001_ $$0P:(DE-HGF)0$$aXu, Jing$$b6
001023791 7001_ $$0P:(DE-HGF)0$$aRao, Hengyi$$b7$$eCorresponding author
001023791 773__ $$0PERI:(DE-600)1498433-7$$a10.1016/j.neubiorev.2024.105607$$gp. 105607 -$$p105607 -$$tNeuroscience & biobehavioral reviews$$v160$$x0149-7634$$y2024
001023791 8564_ $$uhttps://juser.fz-juelich.de/record/1023791/files/1-s2.0-S0149763424000769-main-1.pdf
001023791 8564_ $$uhttps://juser.fz-juelich.de/record/1023791/files/1-s2.0-S0149763424000769-main-1.gif?subformat=icon$$xicon
001023791 8564_ $$uhttps://juser.fz-juelich.de/record/1023791/files/1-s2.0-S0149763424000769-main-1.jpg?subformat=icon-1440$$xicon-1440
001023791 8564_ $$uhttps://juser.fz-juelich.de/record/1023791/files/1-s2.0-S0149763424000769-main-1.jpg?subformat=icon-180$$xicon-180
001023791 8564_ $$uhttps://juser.fz-juelich.de/record/1023791/files/1-s2.0-S0149763424000769-main-1.jpg?subformat=icon-640$$xicon-640
001023791 909CO $$ooai:juser.fz-juelich.de:1023791$$pVDB
001023791 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)131678$$aForschungszentrum Jülich$$b5$$kFZJ
001023791 9101_ $$0I:(DE-HGF)0$$6P:(DE-Juel1)131678$$a HHU Düsseldorf$$b5
001023791 9101_ $$0I:(DE-HGF)0$$6P:(DE-HGF)0$$a Department of Neurology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA. hengyi@pennmedicine.upenn.edu$$b7
001023791 9131_ $$0G:(DE-HGF)POF4-525$$1G:(DE-HGF)POF4-520$$2G:(DE-HGF)POF4-500$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-5251$$aDE-HGF$$bKey Technologies$$lNatural, Artificial and Cognitive Information Processing$$vDecoding Brain Organization and Dysfunction$$x0
001023791 9131_ $$0G:(DE-HGF)POF4-525$$1G:(DE-HGF)POF4-520$$2G:(DE-HGF)POF4-500$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-5253$$aDE-HGF$$bKey Technologies$$lNatural, Artificial and Cognitive Information Processing$$vDecoding Brain Organization and Dysfunction$$x1
001023791 9141_ $$y2024
001023791 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2023-10-21
001023791 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2023-10-21
001023791 915__ $$0StatID:(DE-HGF)0420$$2StatID$$aNationallizenz$$d2024-12-18$$wger
001023791 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2024-12-18
001023791 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2024-12-18
001023791 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2024-12-18
001023791 915__ $$0StatID:(DE-HGF)1050$$2StatID$$aDBCoverage$$bBIOSIS Previews$$d2024-12-18
001023791 915__ $$0StatID:(DE-HGF)1030$$2StatID$$aDBCoverage$$bCurrent Contents - Life Sciences$$d2024-12-18
001023791 915__ $$0StatID:(DE-HGF)1120$$2StatID$$aDBCoverage$$bBIOSIS Reviews Reports And Meetings$$d2024-12-18
001023791 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2024-12-18
001023791 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bNEUROSCI BIOBEHAV R : 2022$$d2024-12-18
001023791 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search$$d2024-12-18
001023791 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC$$d2024-12-18
001023791 915__ $$0StatID:(DE-HGF)9905$$2StatID$$aIF >= 5$$bNEUROSCI BIOBEHAV R : 2022$$d2024-12-18
001023791 920__ $$lyes
001023791 9201_ $$0I:(DE-Juel1)INM-7-20090406$$kINM-7$$lGehirn & Verhalten$$x0
001023791 980__ $$ajournal
001023791 980__ $$aVDB
001023791 980__ $$aI:(DE-Juel1)INM-7-20090406
001023791 980__ $$aUNRESTRICTED