001023792 001__ 1023792
001023792 005__ 20250203103456.0
001023792 0247_ $$2doi$$a10.48550/ARXIV.2307.04897
001023792 0247_ $$2datacite_doi$$a10.34734/FZJ-2024-01805
001023792 037__ $$aFZJ-2024-01805
001023792 1001_ $$0P:(DE-Juel1)196096$$aStruck, Tom$$b0$$eCorresponding author$$ufzj
001023792 245__ $$aSpin-EPR-pair separation by conveyor-mode single electron shuttling in Si/SiGe
001023792 260__ $$barXiv$$c2023
001023792 3367_ $$0PUB:(DE-HGF)25$$2PUB:(DE-HGF)$$aPreprint$$bpreprint$$mpreprint$$s1709895126_23485
001023792 3367_ $$2ORCID$$aWORKING_PAPER
001023792 3367_ $$028$$2EndNote$$aElectronic Article
001023792 3367_ $$2DRIVER$$apreprint
001023792 3367_ $$2BibTeX$$aARTICLE
001023792 3367_ $$2DataCite$$aOutput Types/Working Paper
001023792 520__ $$aLong-ranged coherent qubit coupling is a missing function block for scaling up spin qubit based quantum computing solutions. Spin-coherent conveyor-mode electron-shuttling could enable spin quantum-chips with scalable and sparse qubit-architecture. Its key feature is the operation by only few easily tuneable input terminals and compatibility with industrial gate-fabrication. Single electron shuttling in conveyor-mode in a 420 nm long quantum bus has been demonstrated previously. Here we investigate the spin coherence during conveyor-mode shuttling by separation and rejoining an Einstein-Podolsky-Rosen (EPR) spin-pair. Compared to previous work we boost the shuttle velocity by a factor of 10000. We observe a rising spin-qubit dephasing time with the longer shuttle distances due to motional narrowing and estimate the spin-shuttle infidelity due to dephasing to be 0.7 % for a total shuttle distance of nominal 560 nm. Shuttling several loops up to an accumulated distance of 3.36 $μ$m, spin-entanglement of the EPR pair is still detectable, giving good perspective for our approach of a shuttle-based scalable quantum computing architecture in silicon.
001023792 536__ $$0G:(DE-HGF)POF4-5221$$a5221 - Advanced Solid-State Qubits and Qubit Systems (POF4-522)$$cPOF4-522$$fPOF IV$$x0
001023792 588__ $$aDataset connected to DataCite
001023792 650_7 $$2Other$$aQuantum Physics (quant-ph)
001023792 650_7 $$2Other$$aMesoscale and Nanoscale Physics (cond-mat.mes-hall)
001023792 650_7 $$2Other$$aFOS: Physical sciences
001023792 7001_ $$0P:(DE-Juel1)196668$$aVolmer, Mats$$b1$$ufzj
001023792 7001_ $$0P:(DE-Juel1)196090$$aVisser, Lino$$b2$$ufzj
001023792 7001_ $$0P:(DE-HGF)0$$aOffermann, Tobias$$b3
001023792 7001_ $$0P:(DE-HGF)0$$aXue, Ran$$b4
001023792 7001_ $$0P:(DE-Juel1)167206$$aTu, Jhih-Sian$$b5$$ufzj
001023792 7001_ $$0P:(DE-Juel1)128856$$aTrellenkamp, Stefan$$b6$$ufzj
001023792 7001_ $$0P:(DE-HGF)0$$aCywiński, Łukasz$$b7
001023792 7001_ $$0P:(DE-Juel1)172019$$aBluhm, Hendrik$$b8$$ufzj
001023792 7001_ $$0P:(DE-Juel1)172641$$aSchreiber, Lars R.$$b9$$ufzj
001023792 773__ $$a10.48550/ARXIV.2307.04897
001023792 8564_ $$uhttps://juser.fz-juelich.de/record/1023792/files/2307.04897.pdf$$yOpenAccess
001023792 8564_ $$uhttps://juser.fz-juelich.de/record/1023792/files/2307.04897.gif?subformat=icon$$xicon$$yOpenAccess
001023792 8564_ $$uhttps://juser.fz-juelich.de/record/1023792/files/2307.04897.jpg?subformat=icon-1440$$xicon-1440$$yOpenAccess
001023792 8564_ $$uhttps://juser.fz-juelich.de/record/1023792/files/2307.04897.jpg?subformat=icon-180$$xicon-180$$yOpenAccess
001023792 8564_ $$uhttps://juser.fz-juelich.de/record/1023792/files/2307.04897.jpg?subformat=icon-640$$xicon-640$$yOpenAccess
001023792 909CO $$ooai:juser.fz-juelich.de:1023792$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire
001023792 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)196096$$aForschungszentrum Jülich$$b0$$kFZJ
001023792 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)196668$$aForschungszentrum Jülich$$b1$$kFZJ
001023792 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)196090$$aForschungszentrum Jülich$$b2$$kFZJ
001023792 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)167206$$aForschungszentrum Jülich$$b5$$kFZJ
001023792 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)128856$$aForschungszentrum Jülich$$b6$$kFZJ
001023792 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)172019$$aForschungszentrum Jülich$$b8$$kFZJ
001023792 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)172641$$aForschungszentrum Jülich$$b9$$kFZJ
001023792 9131_ $$0G:(DE-HGF)POF4-522$$1G:(DE-HGF)POF4-520$$2G:(DE-HGF)POF4-500$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-5221$$aDE-HGF$$bKey Technologies$$lNatural, Artificial and Cognitive Information Processing$$vQuantum Computing$$x0
001023792 9141_ $$y2024
001023792 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
001023792 920__ $$lyes
001023792 9201_ $$0I:(DE-Juel1)PGI-11-20170113$$kPGI-11$$lJARA Institut Quanteninformation$$x0
001023792 9201_ $$0I:(DE-Juel1)HNF-20170116$$kHNF$$lHelmholtz - Nanofacility$$x1
001023792 980__ $$apreprint
001023792 980__ $$aVDB
001023792 980__ $$aUNRESTRICTED
001023792 980__ $$aI:(DE-Juel1)PGI-11-20170113
001023792 980__ $$aI:(DE-Juel1)HNF-20170116
001023792 9801_ $$aFullTexts