Hauptseite > Publikationsdatenbank > Spin-EPR-pair separation by conveyor-mode single electron shuttling in Si/SiGe > print |
001 | 1023792 | ||
005 | 20250203103456.0 | ||
024 | 7 | _ | |a 10.48550/ARXIV.2307.04897 |2 doi |
024 | 7 | _ | |a 10.34734/FZJ-2024-01805 |2 datacite_doi |
037 | _ | _ | |a FZJ-2024-01805 |
100 | 1 | _ | |a Struck, Tom |0 P:(DE-Juel1)196096 |b 0 |e Corresponding author |u fzj |
245 | _ | _ | |a Spin-EPR-pair separation by conveyor-mode single electron shuttling in Si/SiGe |
260 | _ | _ | |c 2023 |b arXiv |
336 | 7 | _ | |a Preprint |b preprint |m preprint |0 PUB:(DE-HGF)25 |s 1709895126_23485 |2 PUB:(DE-HGF) |
336 | 7 | _ | |a WORKING_PAPER |2 ORCID |
336 | 7 | _ | |a Electronic Article |0 28 |2 EndNote |
336 | 7 | _ | |a preprint |2 DRIVER |
336 | 7 | _ | |a ARTICLE |2 BibTeX |
336 | 7 | _ | |a Output Types/Working Paper |2 DataCite |
520 | _ | _ | |a Long-ranged coherent qubit coupling is a missing function block for scaling up spin qubit based quantum computing solutions. Spin-coherent conveyor-mode electron-shuttling could enable spin quantum-chips with scalable and sparse qubit-architecture. Its key feature is the operation by only few easily tuneable input terminals and compatibility with industrial gate-fabrication. Single electron shuttling in conveyor-mode in a 420 nm long quantum bus has been demonstrated previously. Here we investigate the spin coherence during conveyor-mode shuttling by separation and rejoining an Einstein-Podolsky-Rosen (EPR) spin-pair. Compared to previous work we boost the shuttle velocity by a factor of 10000. We observe a rising spin-qubit dephasing time with the longer shuttle distances due to motional narrowing and estimate the spin-shuttle infidelity due to dephasing to be 0.7 % for a total shuttle distance of nominal 560 nm. Shuttling several loops up to an accumulated distance of 3.36 $μ$m, spin-entanglement of the EPR pair is still detectable, giving good perspective for our approach of a shuttle-based scalable quantum computing architecture in silicon. |
536 | _ | _ | |a 5221 - Advanced Solid-State Qubits and Qubit Systems (POF4-522) |0 G:(DE-HGF)POF4-5221 |c POF4-522 |f POF IV |x 0 |
588 | _ | _ | |a Dataset connected to DataCite |
650 | _ | 7 | |a Quantum Physics (quant-ph) |2 Other |
650 | _ | 7 | |a Mesoscale and Nanoscale Physics (cond-mat.mes-hall) |2 Other |
650 | _ | 7 | |a FOS: Physical sciences |2 Other |
700 | 1 | _ | |a Volmer, Mats |0 P:(DE-Juel1)196668 |b 1 |u fzj |
700 | 1 | _ | |a Visser, Lino |0 P:(DE-Juel1)196090 |b 2 |u fzj |
700 | 1 | _ | |a Offermann, Tobias |0 P:(DE-HGF)0 |b 3 |
700 | 1 | _ | |a Xue, Ran |0 P:(DE-HGF)0 |b 4 |
700 | 1 | _ | |a Tu, Jhih-Sian |0 P:(DE-Juel1)167206 |b 5 |u fzj |
700 | 1 | _ | |a Trellenkamp, Stefan |0 P:(DE-Juel1)128856 |b 6 |u fzj |
700 | 1 | _ | |a Cywiński, Łukasz |0 P:(DE-HGF)0 |b 7 |
700 | 1 | _ | |a Bluhm, Hendrik |0 P:(DE-Juel1)172019 |b 8 |u fzj |
700 | 1 | _ | |a Schreiber, Lars R. |0 P:(DE-Juel1)172641 |b 9 |u fzj |
773 | _ | _ | |a 10.48550/ARXIV.2307.04897 |
856 | 4 | _ | |y OpenAccess |u https://juser.fz-juelich.de/record/1023792/files/2307.04897.pdf |
856 | 4 | _ | |y OpenAccess |x icon |u https://juser.fz-juelich.de/record/1023792/files/2307.04897.gif?subformat=icon |
856 | 4 | _ | |y OpenAccess |x icon-1440 |u https://juser.fz-juelich.de/record/1023792/files/2307.04897.jpg?subformat=icon-1440 |
856 | 4 | _ | |y OpenAccess |x icon-180 |u https://juser.fz-juelich.de/record/1023792/files/2307.04897.jpg?subformat=icon-180 |
856 | 4 | _ | |y OpenAccess |x icon-640 |u https://juser.fz-juelich.de/record/1023792/files/2307.04897.jpg?subformat=icon-640 |
909 | C | O | |o oai:juser.fz-juelich.de:1023792 |p openaire |p open_access |p VDB |p driver |p dnbdelivery |
910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 0 |6 P:(DE-Juel1)196096 |
910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 1 |6 P:(DE-Juel1)196668 |
910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 2 |6 P:(DE-Juel1)196090 |
910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 5 |6 P:(DE-Juel1)167206 |
910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 6 |6 P:(DE-Juel1)128856 |
910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 8 |6 P:(DE-Juel1)172019 |
910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 9 |6 P:(DE-Juel1)172641 |
913 | 1 | _ | |a DE-HGF |b Key Technologies |l Natural, Artificial and Cognitive Information Processing |1 G:(DE-HGF)POF4-520 |0 G:(DE-HGF)POF4-522 |3 G:(DE-HGF)POF4 |2 G:(DE-HGF)POF4-500 |4 G:(DE-HGF)POF |v Quantum Computing |9 G:(DE-HGF)POF4-5221 |x 0 |
914 | 1 | _ | |y 2024 |
915 | _ | _ | |a OpenAccess |0 StatID:(DE-HGF)0510 |2 StatID |
920 | _ | _ | |l yes |
920 | 1 | _ | |0 I:(DE-Juel1)PGI-11-20170113 |k PGI-11 |l JARA Institut Quanteninformation |x 0 |
920 | 1 | _ | |0 I:(DE-Juel1)HNF-20170116 |k HNF |l Helmholtz - Nanofacility |x 1 |
980 | _ | _ | |a preprint |
980 | _ | _ | |a VDB |
980 | _ | _ | |a UNRESTRICTED |
980 | _ | _ | |a I:(DE-Juel1)PGI-11-20170113 |
980 | _ | _ | |a I:(DE-Juel1)HNF-20170116 |
980 | 1 | _ | |a FullTexts |
Library | Collection | CLSMajor | CLSMinor | Language | Author |
---|