001023793 001__ 1023793
001023793 005__ 20250203103456.0
001023793 0247_ $$2doi$$a10.48550/ARXIV.2306.16348
001023793 0247_ $$2datacite_doi$$a10.34734/FZJ-2024-01806
001023793 037__ $$aFZJ-2024-01806
001023793 1001_ $$0P:(DE-Juel1)180857$$aKünne, Matthias$$b0$$ufzj
001023793 245__ $$aThe SpinBus Architecture: Scaling Spin Qubits with Electron Shuttling
001023793 260__ $$barXiv$$c2023
001023793 3367_ $$0PUB:(DE-HGF)25$$2PUB:(DE-HGF)$$aPreprint$$bpreprint$$mpreprint$$s1709900004_4816
001023793 3367_ $$2ORCID$$aWORKING_PAPER
001023793 3367_ $$028$$2EndNote$$aElectronic Article
001023793 3367_ $$2DRIVER$$apreprint
001023793 3367_ $$2BibTeX$$aARTICLE
001023793 3367_ $$2DataCite$$aOutput Types/Working Paper
001023793 520__ $$aQuantum processor architectures must enable scaling to large qubit numbers while providing two-dimensional qubit connectivity and exquisite operation fidelities. For microwave-controlled semiconductor spin qubits, dense arrays have made considerable progress, but are still limited in size by wiring fan-out and exhibit significant crosstalk between qubits. To overcome these limitations, we introduce the SpinBus architecture, which uses electron shuttling to connect qubits and features low operating frequencies and enhanced qubit coherence. Device simulations for all relevant operations in the Si/SiGe platform validate the feasibility with established semiconductor patterning technology and operation fidelities exceeding 99.9 %. Control using room temperature instruments can plausibly support at least 144 qubits, but much larger numbers are conceivable with cryogenic control circuits. Building on the theoretical feasibility of high-fidelity spin-coherent electron shuttling as key enabling factor, the SpinBus architecture may be the basis for a spin-based quantum processor that meets the scalability requirements for practical quantum computing.
001023793 536__ $$0G:(DE-HGF)POF4-5221$$a5221 - Advanced Solid-State Qubits and Qubit Systems (POF4-522)$$cPOF4-522$$fPOF IV$$x0
001023793 588__ $$aDataset connected to DataCite
001023793 650_7 $$2Other$$aQuantum Physics (quant-ph)
001023793 650_7 $$2Other$$aMesoscale and Nanoscale Physics (cond-mat.mes-hall)
001023793 650_7 $$2Other$$aFOS: Physical sciences
001023793 7001_ $$0P:(DE-Juel1)196636$$aWillmes, Alexander$$b1$$ufzj
001023793 7001_ $$0P:(DE-HGF)0$$aOberländer, Max$$b2
001023793 7001_ $$aGorjaew, Christian$$b3
001023793 7001_ $$0P:(DE-Juel1)177034$$aTeske, Julian D.$$b4
001023793 7001_ $$0P:(DE-Juel1)196752$$aBhardwaj, Harsh$$b5$$ufzj
001023793 7001_ $$0P:(DE-HGF)0$$aBeer, Max$$b6
001023793 7001_ $$0P:(DE-Juel1)164788$$aKammerloher, Eugen$$b7$$ufzj
001023793 7001_ $$0P:(DE-Juel1)174088$$aOtten, René$$b8$$ufzj
001023793 7001_ $$0P:(DE-HGF)0$$aSeidler, Inga$$b9
001023793 7001_ $$0P:(DE-Juel1)186616$$aXue, Ran$$b10
001023793 7001_ $$0P:(DE-Juel1)172641$$aSchreiber, Lars R.$$b11$$eCorresponding author$$ufzj
001023793 7001_ $$0P:(DE-Juel1)172019$$aBluhm, Hendrik$$b12$$ufzj
001023793 773__ $$a10.48550/ARXIV.2306.16348
001023793 8564_ $$uhttps://juser.fz-juelich.de/record/1023793/files/2306.16348.pdf$$yOpenAccess
001023793 8564_ $$uhttps://juser.fz-juelich.de/record/1023793/files/2306.16348.gif?subformat=icon$$xicon$$yOpenAccess
001023793 8564_ $$uhttps://juser.fz-juelich.de/record/1023793/files/2306.16348.jpg?subformat=icon-1440$$xicon-1440$$yOpenAccess
001023793 8564_ $$uhttps://juser.fz-juelich.de/record/1023793/files/2306.16348.jpg?subformat=icon-180$$xicon-180$$yOpenAccess
001023793 8564_ $$uhttps://juser.fz-juelich.de/record/1023793/files/2306.16348.jpg?subformat=icon-640$$xicon-640$$yOpenAccess
001023793 909CO $$ooai:juser.fz-juelich.de:1023793$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire
001023793 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)180857$$aForschungszentrum Jülich$$b0$$kFZJ
001023793 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)196636$$aForschungszentrum Jülich$$b1$$kFZJ
001023793 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)196752$$aForschungszentrum Jülich$$b5$$kFZJ
001023793 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)164788$$aForschungszentrum Jülich$$b7$$kFZJ
001023793 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)174088$$aForschungszentrum Jülich$$b8$$kFZJ
001023793 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)172641$$aForschungszentrum Jülich$$b11$$kFZJ
001023793 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)172019$$aForschungszentrum Jülich$$b12$$kFZJ
001023793 9131_ $$0G:(DE-HGF)POF4-522$$1G:(DE-HGF)POF4-520$$2G:(DE-HGF)POF4-500$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-5221$$aDE-HGF$$bKey Technologies$$lNatural, Artificial and Cognitive Information Processing$$vQuantum Computing$$x0
001023793 9141_ $$y2024
001023793 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
001023793 920__ $$lyes
001023793 9201_ $$0I:(DE-Juel1)PGI-11-20170113$$kPGI-11$$lJARA Institut Quanteninformation$$x0
001023793 9201_ $$0I:(DE-Juel1)PGI-13-20210701$$kPGI-13$$lQuantum Computing$$x1
001023793 980__ $$apreprint
001023793 980__ $$aVDB
001023793 980__ $$aUNRESTRICTED
001023793 980__ $$aI:(DE-Juel1)PGI-11-20170113
001023793 980__ $$aI:(DE-Juel1)PGI-13-20210701
001023793 9801_ $$aFullTexts