001     1023793
005     20250203103456.0
024 7 _ |a 10.48550/ARXIV.2306.16348
|2 doi
024 7 _ |a 10.34734/FZJ-2024-01806
|2 datacite_doi
037 _ _ |a FZJ-2024-01806
100 1 _ |a Künne, Matthias
|0 P:(DE-Juel1)180857
|b 0
|u fzj
245 _ _ |a The SpinBus Architecture: Scaling Spin Qubits with Electron Shuttling
260 _ _ |c 2023
|b arXiv
336 7 _ |a Preprint
|b preprint
|m preprint
|0 PUB:(DE-HGF)25
|s 1709900004_4816
|2 PUB:(DE-HGF)
336 7 _ |a WORKING_PAPER
|2 ORCID
336 7 _ |a Electronic Article
|0 28
|2 EndNote
336 7 _ |a preprint
|2 DRIVER
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a Output Types/Working Paper
|2 DataCite
520 _ _ |a Quantum processor architectures must enable scaling to large qubit numbers while providing two-dimensional qubit connectivity and exquisite operation fidelities. For microwave-controlled semiconductor spin qubits, dense arrays have made considerable progress, but are still limited in size by wiring fan-out and exhibit significant crosstalk between qubits. To overcome these limitations, we introduce the SpinBus architecture, which uses electron shuttling to connect qubits and features low operating frequencies and enhanced qubit coherence. Device simulations for all relevant operations in the Si/SiGe platform validate the feasibility with established semiconductor patterning technology and operation fidelities exceeding 99.9 %. Control using room temperature instruments can plausibly support at least 144 qubits, but much larger numbers are conceivable with cryogenic control circuits. Building on the theoretical feasibility of high-fidelity spin-coherent electron shuttling as key enabling factor, the SpinBus architecture may be the basis for a spin-based quantum processor that meets the scalability requirements for practical quantum computing.
536 _ _ |a 5221 - Advanced Solid-State Qubits and Qubit Systems (POF4-522)
|0 G:(DE-HGF)POF4-5221
|c POF4-522
|f POF IV
|x 0
588 _ _ |a Dataset connected to DataCite
650 _ 7 |a Quantum Physics (quant-ph)
|2 Other
650 _ 7 |a Mesoscale and Nanoscale Physics (cond-mat.mes-hall)
|2 Other
650 _ 7 |a FOS: Physical sciences
|2 Other
700 1 _ |a Willmes, Alexander
|0 P:(DE-Juel1)196636
|b 1
|u fzj
700 1 _ |a Oberländer, Max
|0 P:(DE-HGF)0
|b 2
700 1 _ |a Gorjaew, Christian
|b 3
700 1 _ |a Teske, Julian D.
|0 P:(DE-Juel1)177034
|b 4
700 1 _ |a Bhardwaj, Harsh
|0 P:(DE-Juel1)196752
|b 5
|u fzj
700 1 _ |a Beer, Max
|0 P:(DE-HGF)0
|b 6
700 1 _ |a Kammerloher, Eugen
|0 P:(DE-Juel1)164788
|b 7
|u fzj
700 1 _ |a Otten, René
|0 P:(DE-Juel1)174088
|b 8
|u fzj
700 1 _ |a Seidler, Inga
|0 P:(DE-HGF)0
|b 9
700 1 _ |a Xue, Ran
|0 P:(DE-Juel1)186616
|b 10
700 1 _ |a Schreiber, Lars R.
|0 P:(DE-Juel1)172641
|b 11
|e Corresponding author
|u fzj
700 1 _ |a Bluhm, Hendrik
|0 P:(DE-Juel1)172019
|b 12
|u fzj
773 _ _ |a 10.48550/ARXIV.2306.16348
856 4 _ |y OpenAccess
|u https://juser.fz-juelich.de/record/1023793/files/2306.16348.pdf
856 4 _ |y OpenAccess
|x icon
|u https://juser.fz-juelich.de/record/1023793/files/2306.16348.gif?subformat=icon
856 4 _ |y OpenAccess
|x icon-1440
|u https://juser.fz-juelich.de/record/1023793/files/2306.16348.jpg?subformat=icon-1440
856 4 _ |y OpenAccess
|x icon-180
|u https://juser.fz-juelich.de/record/1023793/files/2306.16348.jpg?subformat=icon-180
856 4 _ |y OpenAccess
|x icon-640
|u https://juser.fz-juelich.de/record/1023793/files/2306.16348.jpg?subformat=icon-640
909 C O |o oai:juser.fz-juelich.de:1023793
|p openaire
|p open_access
|p VDB
|p driver
|p dnbdelivery
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 0
|6 P:(DE-Juel1)180857
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 1
|6 P:(DE-Juel1)196636
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 5
|6 P:(DE-Juel1)196752
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 7
|6 P:(DE-Juel1)164788
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 8
|6 P:(DE-Juel1)174088
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 11
|6 P:(DE-Juel1)172641
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 12
|6 P:(DE-Juel1)172019
913 1 _ |a DE-HGF
|b Key Technologies
|l Natural, Artificial and Cognitive Information Processing
|1 G:(DE-HGF)POF4-520
|0 G:(DE-HGF)POF4-522
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-500
|4 G:(DE-HGF)POF
|v Quantum Computing
|9 G:(DE-HGF)POF4-5221
|x 0
914 1 _ |y 2024
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)PGI-11-20170113
|k PGI-11
|l JARA Institut Quanteninformation
|x 0
920 1 _ |0 I:(DE-Juel1)PGI-13-20210701
|k PGI-13
|l Quantum Computing
|x 1
980 _ _ |a preprint
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)PGI-11-20170113
980 _ _ |a I:(DE-Juel1)PGI-13-20210701
980 1 _ |a FullTexts


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21