001023797 001__ 1023797
001023797 005__ 20250204113811.0
001023797 0247_ $$2doi$$a10.1103/PhysRevResearch.6.013220
001023797 0247_ $$2datacite_doi$$a10.34734/FZJ-2024-01810
001023797 0247_ $$2WOS$$aWOS:001187633700003
001023797 037__ $$aFZJ-2024-01810
001023797 041__ $$aEnglish
001023797 082__ $$a530
001023797 1001_ $$0P:(DE-Juel1)195623$$aBode, Tim$$b0$$eCorresponding author
001023797 245__ $$aNon-Markovian dynamics of open quantum systems via auxiliary particles with exact operator constraint
001023797 260__ $$aCollege Park, MD$$bAPS$$c2024
001023797 3367_ $$2DRIVER$$aarticle
001023797 3367_ $$2DataCite$$aOutput Types/Journal article
001023797 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1709898973_21345
001023797 3367_ $$2BibTeX$$aARTICLE
001023797 3367_ $$2ORCID$$aJOURNAL_ARTICLE
001023797 3367_ $$00$$2EndNote$$aJournal Article
001023797 520__ $$aWe introduce an auxiliary-particle field theory to treat the non-Markovian dynamics of driven-dissipative quantum systems of the Jaynes-Cummings type. It assigns an individual quantum field to each reservoir state and provides an analytic, faithful representation of the coupled system-bath dynamics. We apply the method to a driven-dissipative photon Bose-Einstein condensate (BEC) coupled to a reservoir of dye molecules with electronic and vibronic excitations. The complete phase diagram of this system exhibits a hidden, non-Hermitian phase transition separating temporally oscillating from biexponentially decaying photon density correlations within the BEC. On one hand, this provides a qualitative distinction of the thermal photon BEC from a laser. On the other hand, it shows that one may continuously tune from the BEC to the lasing phase by circumventing a critical point. This auxiliary-particle method is generally applicable to the dynamics of open, non-Markovian quantum systems.
001023797 536__ $$0G:(DE-HGF)POF4-5223$$a5223 - Quantum-Computer Control Systems and Cryoelectronics (POF4-522)$$cPOF4-522$$fPOF IV$$x0
001023797 588__ $$aDataset connected to CrossRef, Journals: juser.fz-juelich.de
001023797 7001_ $$0P:(DE-HGF)0$$aKajan, Michael$$b1
001023797 7001_ $$0P:(DE-HGF)0$$aMeirinhos, Francisco$$b2
001023797 7001_ $$0P:(DE-HGF)0$$aKroha, Johann$$b3
001023797 773__ $$0PERI:(DE-600)3004165-X$$a10.1103/PhysRevResearch.6.013220$$gVol. 6, no. 1, p. 013220$$n1$$p013220$$tPhysical review research$$v6$$x2643-1564$$y2024
001023797 8564_ $$uhttps://juser.fz-juelich.de/record/1023797/files/PhysRevResearch.6.013220.pdf$$yOpenAccess
001023797 8564_ $$uhttps://juser.fz-juelich.de/record/1023797/files/PhysRevResearch.6.013220.gif?subformat=icon$$xicon$$yOpenAccess
001023797 8564_ $$uhttps://juser.fz-juelich.de/record/1023797/files/PhysRevResearch.6.013220.jpg?subformat=icon-1440$$xicon-1440$$yOpenAccess
001023797 8564_ $$uhttps://juser.fz-juelich.de/record/1023797/files/PhysRevResearch.6.013220.jpg?subformat=icon-180$$xicon-180$$yOpenAccess
001023797 8564_ $$uhttps://juser.fz-juelich.de/record/1023797/files/PhysRevResearch.6.013220.jpg?subformat=icon-640$$xicon-640$$yOpenAccess
001023797 909CO $$ooai:juser.fz-juelich.de:1023797$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire
001023797 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)195623$$aForschungszentrum Jülich$$b0$$kFZJ
001023797 9131_ $$0G:(DE-HGF)POF4-522$$1G:(DE-HGF)POF4-520$$2G:(DE-HGF)POF4-500$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-5223$$aDE-HGF$$bKey Technologies$$lNatural, Artificial and Cognitive Information Processing$$vQuantum Computing$$x0
001023797 9141_ $$y2024
001023797 915__ $$0LIC:(DE-HGF)CCBY4$$2HGFVOC$$aCreative Commons Attribution CC BY 4.0
001023797 915__ $$0StatID:(DE-HGF)0700$$2StatID$$aFees$$d2023-10-27
001023797 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
001023797 915__ $$0StatID:(DE-HGF)0561$$2StatID$$aArticle Processing Charges$$d2023-10-27
001023797 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2025-01-02
001023797 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2025-01-02
001023797 915__ $$0StatID:(DE-HGF)0501$$2StatID$$aDBCoverage$$bDOAJ Seal$$d2024-02-07T08:08:02Z
001023797 915__ $$0StatID:(DE-HGF)0500$$2StatID$$aDBCoverage$$bDOAJ$$d2024-02-07T08:08:02Z
001023797 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bDOAJ : Anonymous peer review$$d2024-02-07T08:08:02Z
001023797 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2025-01-02
001023797 915__ $$0StatID:(DE-HGF)0112$$2StatID$$aWoS$$bEmerging Sources Citation Index$$d2025-01-02
001023797 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2025-01-02
001023797 920__ $$lyes
001023797 9201_ $$0I:(DE-Juel1)PGI-12-20200716$$kPGI-12$$lQuantum Computing Analytics$$x0
001023797 980__ $$ajournal
001023797 980__ $$aVDB
001023797 980__ $$aUNRESTRICTED
001023797 980__ $$aI:(DE-Juel1)PGI-12-20200716
001023797 9801_ $$aFullTexts