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Non-Markovian dynamics of open quantum systems via auxiliary particles
with exact operator constraint
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We introduce an auxiliary-particle field theory to treat the non-Markovian dynamics of driven-dissipative
quantum systems of the Jaynes-Cummings type. It assigns an individual quantum field to each reservoir state
and provides an analytic, faithful representation of the coupled system-bath dynamics. We apply the method
to a driven-dissipative photon Bose-Einstein condensate (BEC) coupled to a reservoir of dye molecules with
electronic and vibronic excitations. The complete phase diagram of this system exhibits a hidden, non-Hermitian
phase transition separating temporally oscillating from biexponentially decaying photon density correlations
within the BEC. On one hand, this provides a qualitative distinction of the thermal photon BEC from a laser.
On the other hand, it shows that one may continuously tune from the BEC to the lasing phase by circumventing
a critical point. This auxiliary-particle method is generally applicable to the dynamics of open, non-Markovian

quantum systems.

DOI: 10.1103/PhysRevResearch.6.013220

I. INTRODUCTION

Experimental platforms coupling a set of photonic cavity
modes to an ensemble of dye molecules, comprising two-level
systems (TLSs) of electronic excitations and local vibrational
degrees of freedom, are relevant for applications ranging
from Bose-Einstein condensates (BEC) of photons [1-5],
exciton polaritons [6,7], and plasmonic lattices [8] to single-
photon sources for quantum information [9]. Despite general
nonequilibrium field theory being available [10], the sta-
tionary states and dynamics of such open, driven-dissipative
quantum gases are unexplored to a large extent. Recently,
measurements of the second-order coherence in photon BECs
[11,12] have opened the door to a deeper understanding. In
fact, the experiments revealed a hidden, complex structure
in the temporal correlations which undergo a non-Hermitian
phase transition as the system is driven away from equilib-
rium, while the spectral mode occupation still follows an
equilibrium Bose-Einstein distribution.

As open quantum systems are driven far from equilib-
rium, reservoir frequency scales like the spectral substructure
[13] and relaxation rates can no longer be considered fast
compared to the photonic cavity loss and tunneling rates. In
particular, in multiple coupled cavities [14], fast Josephson
oscillations can approach the timescales of such reservoir
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processes. In these cases, quantum coherence and non-
Markovian memory effects [9,15] are expected to become
important. The theoretical treatment of this non-Markovian
regime is complicated by the vast number of reservoir degrees
of freedom and the necessity of describing their full quan-
tum dynamics. Direct numerical time-evolution methods are
limited to rather small systems, and the extension to larger
systems requires truncation of the quantum entanglement
between the subsystems [16]. On the other hand, approxi-
mate techniques based on the Born-Markov approximation
and rate equations [17-21], well established for Markovian
dynamics even in large systems, inherently cannot capture
non-Markovian memory or quantum coherence effects. Stan-
dard field-theoretic techniques suitable for a large number of
degrees of freedom, like the quantum Langevin approach [22],
are hampered by the noncanonical statistics of the pseudospin
operators involved in the electronic TLS dynamics, which
have, for this reason, been approximated by bosons [23]. A
recent mean-field model of organic polartions [24] rests on the
assumption of symmetry breaking for the cavity mode and is
thus limited to large photon numbers. Few-photon effects such
as decondensation cannot be described by this approximation.
Cumulant expansions such as employed in [25] have been
shown recently to be difficult to control [26].

In this work, we develop a general field-theoretic technique
based on an auxiliary-particle representation, which captures
the noncanonical reservoir dynamics exactly, to describe a
large class of coherent, light-matter coupled, open quantum
systems such as the Holstein-Tavis-Cummings Hamiltonian
or arbitrary TLS in a cavity, and generalize it to strong,
time-dependent nonequilibrium. In this approach, an individ-
ual canonical quantum field is assigned to each matter state
(electronic and vibronic molecule excitations), with the con-
straint that the system occupies exactly one of these states at
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any instance of time. Because of the canonical commutation
relations, the auxiliary-field dynamics are amenable to stan-
dard field-theoretic techniques, and the exact confinement to
the physical Hilbert space defined by the above-mentioned
constraint is performed analytically as long as correlations
between different molecules can be neglected. The auxiliary-
particle method has been pioneered by Abrikosov [27] and
Barnes [28,29] and is successfully used [30-33] for strongly
correlated electron systems like the Anderson impurity model
[34]. The extension to stationary nonequilibrium has been
developed in [35-38], and a more recent exposition for cor-
related electrons in time-dependent nonequilibrium can be
found in [39]. Generalizing this to quantum optics, we find
an exceptional point in the dynamics of the second-order
coherence for large losses and uncover a nonequilibrium de-
condensation phase transition indicated by critical slowing
down. We demonstrate how non-Markovian effects become
relevant in the strongly driven-dissipative regime.

II. METHODS

We consider a general class of Hamiltonians of the form
H=H0+Hep+HJCa (D

where

M
Hy =Y wala, + Y wpoy/2+Qbb, )
k =
describes a set of cavity modes with dispersion w; alongside
M molecules comprising an electronic TLS with splitting wp
and a phonon mode €2 (the generalization to multiple phonon
modes is straightforward). The Jaynes-Cummings (JC) cou-

pling in the rotating-wave approximation is as usual given by

Hyc = gX:(akU,;r +ajo,). 3)
k,m

In these expressions, az, bfn are the creation operators for a
photon or a phonon quantum, respectively, and o3, o5 are
Pauli operators describing the electron dynamics. Electron-
phonon coupling results from the phononic-oscillator dis-
placement £, = b, + b/ depending on the electronic TLS
state and reads

Hep =Y QS0 (b, +b}). 4)

A. Auxiliary-particle representation

A single molecule has quantum states |o, n), where 0 =
g, e refers to the electronic ground and excited state, re-
spectively, and n denotes the vibrational state. For each of
these states, we introduce auxiliary or pseudoboson operators
d, ,.d; ,with[d, dl, 1= 8508,y defined by d} ,Ivac) =

|o, n). The molecular oberators may then be expressed as

ZZ vin+1 anan+1’

n=0 o=g,e

Zengn’ Zgn e, n’ (5)

where we have dropped the subscripts m. This representation
is faithful within the Hilbert space spanned by the states |o, n)
(no product states of these), i.e., under the operator constraint
that the total auxiliary particle number obeys

ZZ anon_ (6)

n=0 o

In the frame rotating with the electronic frequency wp, the
Hamiltonian for M = 1 thus reads

H= Za akak—}—Z[nQ (d d, ,+did, )

+QyStn+1(d], d,,—dl . d,,+Hc)

+gZ gn en+akde ndg n)] (7)

where 8, = wy — wp is the resonator detuning. We note in
passing that in pseudoboson representation, the molecular
part of this Hamiltonian is quadratic. That is, the polaron
transformation diagonalizing this part is straightforward and
commutes with the constraint O = 1, but transforrns the
molecule-photon coupling into ), ym,l(ak i sl +He),
where the coupling matrix y,,, may be calculated analytically
and is proportional to the Franck-Condon integrals. In the
following, we will use the nondiagonal representation Eq. (7)
for quantitative evaluations.

B. Hilbert-Space projection

Since the Hamiltonian (7) conserves the operator 0, any
physical expectation value of operators acting on the molec-
ular Hilbert space (e.g., combinations of b, b, or o* that
annihilate the empty sector O = 0) can be projected onto the
sector O = 1 by first inserting a factor of {Q at the beginning
of the Schwinger-Keldysh contour [40], i.e., by replacing
the initial density matrix py by §Q 0o, where the fugacity is
¢ =exp(—u), and the chemical potential ; can be gauged
time-independent. To this end, we write the canonical parti-
tion function on a Hilbert space Hp with any fixed value of
the operator constraint as Try, po = Zc(Q). Then the grand-
canonical partition function becomes

Zg =Tr e po = Ze(0) + ¢Ze() + 0?8
where the decisive factor ;Q weighs each canonical term
according to the operator constraint. The expectation value
associated with Zg is

(X)e = 25" TeX ¢% po. ©)
When X annihilates the empty sector Q = 0, its unphysical

contribution is removed, and we find the correct average in
the physical subspace H; as

—

X),

(X)x, = lim o)

—0

(10)

—
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It is now instructive to look at two special operator averages
atty = 0:

o,n"o,n

Ay wdg)e =) 256" Trold, ,d;, bol = O(D),

(d} d, e = Z5'¢" Tryy ld] ,d,, pol = O().

o.n%o,.nlt {:0
Defining the greater and lesser Green functions
[G™ (1, )] = —ild, ,()d] (")),
(G=(t, )] = —ild] ("), , (1)) (11)

for the molecular ground states, we conclude that these scale
as

G (1) = O(),
—0

G=(t,1') = 0(¢) (12)
=0

at all times as long as the interactions are treated within a
conserving approximation as done below. The same holds for
the excited-state Green functions

[E™(t, 1) = —ild, ,(t)d] (")),
[E=(t, ) = —i(d] ,(t")d, ,, (1)). (13)

Note that, while the greater functions by themselves do not
annihilate the ground state, they still occur in Wick-type ex-
pansions of physical expectation values such as (o (t)o ~ (¢)).
For the special case of a TLS without vibrational states (i.e.,
the Jaynes-Cummings model discussed in Appendix E), we
may calculate physical expectation values such as (o*(¢)) by
applying the Hilbert-space projection according to

. 1 Trel N T
lim 7 140 W14, (D)

1
= —lim — CE~(, "G (t',t
IILI(I);C (¢, )G (1, 1)

(0Tt~ (1) =

= E~(t, "G (¢, 1),
— 4! . 1 Tre! N T
(0= (ot @) = }I_I)I}) @(dg(t ), (t)d, (t)d, (1))

1
= —lim - (G, tHE™ (', ¢t
glg})g_é (t,)E~ (', 1)

= G<(t,tE>(1,1)*, (14)

where we have dropped the vibrational subscripts (m, n = 0)
and explicitly pulled out the fugacity. Now, since any product
of a greater and a lesser auxiliary-particle Green function is of
order ¢, Eq. (14) recovers the correct result. Note that arbitrary
products of time-ordered Pauli matrices can be treated in the
same way. For the equal-time average, we hence find the
expected result

(o)) = gin}) %(;Eﬂt, DG, 1) —¢G=(t,)E~(t,1)")

=iE~(t,t) —iG=(@,1), (15)

which is plotted in Fig. 11 in Appendix E. Note also that we
have used the fact that the equal-time greater Green functions
follow Eq. (25).

The projection of the molecule dynamics is thus imposed
by the simple rule that, in any auxiliary-particle Feynman
diagram, only terms of leading order in ¢ are retained. The
projected Dyson equations then reduce to

(i, —hc)G=(t,t") = / dr T, H)G=(t,1")

Iy

.
—/ df 5, 0)G™ (T, 1),

1)
t
(9, —he)G™(t,1") =/ dr £5(t, )G (,1),  (16)
I

where hg is the noninteracting part of the Hamiltonian (7) in
the molecular ground-state sector, and products of boldfaced
quantities are understood as matrix products. Analogous equa-
tions hold for the excited-state propagators E S(t,1). Observe
how in the first of Egs. (16), terms containing two auxiliary-
particle lesser functions have vanished, while in the second
only terms without lesser functions remain.

The photon Green functions, defined as

[D” (1, )i = —ilay()ay, (1),
[D=(t, )i = —ila), (ta, (1)), (17)

do not participate in the ¢ scaling, since they do not operate in
the auxiliary-particle space. Thus, their Dyson equations have
the usual form,

Dg'Dg(t,t’):/ a7 [S5(t,7) — S5, DIDS (T, 1)
—/ df =5, DD (.1') — D=, 1)],
’ (18)

where we have defined D, I = 10; — hp. We also introduce the
occupation of the photon ground mode as

N(t) = —ImDgy(t, 1), (19)

with steady state N = N(t — 00).

C. Conserving approximation

As mentioned, a conserving approximation is necessary
to implement the O conservation. It can be generated from
a Luttinger-Ward functional [33,41,42]. As we show in Ap-
pendix E, other approximation schemes such as heuristic
truncations of the cumulant hierarchy [20,25] can lead to
unphysical effects excluded here by construction. To second
order in the coupling g, one obtains the analog of the non-
crossing approximation [33], where the self-energies become

2, 1") = igE2(t, ) DS (¢, 1)],
22, 1) =18G2 (1, ) Tr[D2 (1, 1')],
2.1 =i ¢ THEZ (1, 1)GS (', 1)), (20)
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FIG. 1. (a) Sketch of the dye-filled microcavity. (b) A typical
cycle of absorption I't and emission I'~ with intermediate vibra-
tional relaxation A. (c¢) Diagram of the Luttinger-Ward functional
generating the self-energies (20).

which is depicted diagrammatically in Fig. 1(c). The factor
¢~ in EDE stems from the normalization of the physi-
cal average. In any self-energy insertion to D appearing
in an auxiliary-particle diagram, such a normalization is
not present. Consequently, such insertions from the same
molecule vanish by the projection ¢ — 0. For arbitrary
numbers of molecules M, the projection onto the physical
subspace O = 1 is done as described above separately for
each molecule m since Q is conserved locally. Coherence
between different molecules may nevertheless be mediated
by the photon modes, which couple to all the molecules. For
multiple molecules, the right-hand side of Eq. (18) acquires an
additional prefactor M, and the photon propagators within the
self-energies of any particular molecule m become renormal-
ized by self-energy contributions from all the other molecules
m' # m.

D. Driven-dissipative photon-molecule dynamics

While the molecule-bath dynamics are treated fully coher-
ently, we incorporate the external drive and loss by adding
Lindblad terms to the master equation for the density matrix,

o0 =ilp, H1+ Y «Lla]o + Lyp, @n
k

where L[X]p = XpX™ — (XTX, p}/2. The cavity loss is «

and Ly = L4, 4+ Lrelax, Where the external drive and radi-

ationless decay of electron excitations are described by [cf.
Fig. 1(b)]

Ly =Y A1LId] d, 1+ T Lld] ,d, 1}, (22)

" |

iG™(T,0) = [he. G=(T, 0)]+g { (ﬁGn .0 0

where we have introduced an anticommutator. Again, this
equation has the correct fugacity scaling. As mentioned above,

while the process of phonon relaxation due to molecular sol-
vent collisions is captured via

Lo = Y (n+ DIMAR) + 11L1d] d, 4]

n,o

+ (L] . d, 1), (23)

where A is the relaxation rate of the molecular vibrations, and
the solvent temperature enters implicitly through the average
phonon occupation number 7(€2). To our knowledge, the exact
projection method employed here has not, until now, been
applied to open quantum systems. Therefore, we provide more
details on how this generalization is to be performed. Note
also that it was not a priori clear that such a generalization
should be possible.

The Lindblad operator (23) describing the relaxation of
the vibrational states can be understood by investigating the
structurally equivalent operator

r . .
S+ D)L[d}d,] + ALId] dy)lp, (24)

where I' is now an arbitrary constant. The projection is
again performed by removing all terms with too many lesser
functions, where one should keep in mind that for auxiliary
particles there holds

G (t,t)=G™(T,0)=—il (25)

for all times 7. We remark again that these properties are
not an approximation, but exact identities under the projection
method. We arrive at

i,G=(t,t) = hcG=(t,t)

Ci (G, ) 0 \pep
— G=(t,t
3 ( 0 Ggpu,n)¢ D)

/o 0
- G=(t,1),
T3 (0 Ggo(r,r)> @)
i0,G”(t,t) = heG™ (t,1)

Ci(Ght) 0 oo
— G (t,t
2 ( 0 Ggpu,n)¢ D)

' /o 0
— G (t,1).
+3 (o Ggo(r,r)> t.0)

These equations evidently possess the correct fugacity scal-
ings. For the equal-time equation of G~, once more we
remove all terms with the wrong scaling. This yields

(26a)

+

(26b)

< (n+1GH(T,0) 0 -
A+1)Gy (T, O)) , 67T, O)} _F< ()]l AGay(T, O))G (7,0),

27

(

we do not need an equation for the equal-time evolution of
G~ . Within both the ground- and excited-state manifolds, the
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Lindblad operators of Eq. (23) couple neighboring vibrational
states according to a structure which for the self-energy ma-
trices of Egs. (26) and n + 1 states in total looks like

(i + 1) diag(0, Gy, 2G5, .., nGoy 1)
+ idiag(G;,. 2G5y, ...nG;,,0).  (28)

nn’

We still have to consider the external pumping and electronic
loss terms

Ly, = Z{Uﬁ[d:,ndg’”] +T1,£L[d] ,d, ]}

The relevant matrices for this read

ES(t,1) 0
( 0 GS(t, t’))' (29)

In terms of these, the contribution to the equations of motion
can be written rather compactly as

0 ES(t,1) 0
! 0 GS(t,1)

_Ty/0 0 ES(@t,t) 0
2 \0  diag(E>(1,1)) 0 G3(t,1))
(30)

For the forward dynamics, we find

i E~(T,0) 0
0 G~ (T,0)
Ty ([0 0 E<(T,0) 0
=~ 2 1\0 diaglE>(T,0)]) 0 G=(T,0)

r. (diaglG=(T,0)] 0\ (E>(T,0) 0
Tt 0 0 0 G>(T,0))

€29

The equations for the electronic loss I} follow analogously.
The functional form of the total external pumping reads

_ (t —1p)’
L) = 13(1 +Aexp {_Tc,%}) (32)

where fp varies with the attainment of the steady state, and
A = 1072, Aop = 1/2. The initial conditions are N(t) =0,
with Dg, (0, 0) following from the commutator, G;;,(0, 0) =
—i8gp and E;, (0, 0) = 0. The greater functions G,,,(0,0) =
E,_ (0,0) = —idy, are fixed by the projection.

Before concluding this section, consider Fig. 2, which
shows the relaxation of the vibrational degrees of freedom
in the electronic excited state induced by the vibrational re-
laxation in Eq. (23). The dashed line indicates the statistical
average —Im ) nEs(r,t), which correctly approaches 7.
We therefore conclude that our master equation is capable of

describing the phonon thermalization adequately.

III. RESULTS AND DISCUSSION

We solve the Kadanoff-Baym Eqgs. (16, 18) self-
consistently with Eq. (20) using a multi-step predictor-
corrector method [43,44] developed earlier to facilitate
adaptive two-time evolution [45]. We truncate the time inte-
grals at the memory time 7y, Which is set by the inverse,

6 8 10

At

FIG. 2. Relaxation of the vibrational degrees of freedom
in the electronic excited state. The dashed line shows
—Im) P™ npE=(t,t) — ii. The parameters are g=0, ie., we
have decoupled the excited states from the rest of the system,
wp/h =20, Q/A=0.1, §=05, =10, I'h =, =0. The
initial conditions are iEy(0,0) = 1 with all other lesser functions
being zero. The number of vibrational states considered is 10, which
is equivalent to a maximal number of phonons py.x = 9. The results
were calculated with a step size of 101 x 2~ for a number of 2°
steps.

dissipative relaxation rates «, A (Appendix D). This allows for
an efficient yet accurate simulation. For small system sizes,
we find quantitative agreement with quasiexact numerical
time evolution [16]. As a further consistency check, in the
Markovian limit (phonon relaxation rate A faster than any
other scale in the system) our approach reduces to the previ-
ously studied semiclassical rate equations [17], with effective
absorption and emission coefficients

IF = T(+8) = —2Re K(+8), (33)

as derived in Appendix A. I'(£6;) encodes the molecular
absorption and emission spectra shown in Fig. 3 as a function
of § = §;. Around the zero-phonon line, § = 0, these spectra
satisfy the Kennard-Stepanov relation at the temperature fixed
implicitly via 7(€2) (see parameter values in Fig. 4). For the
numerical evaluations, we consider a low solvent temperature

1.0 YA=11

0.5

['(£4)/T(0)

~10 -5 0 5 10

3/

FIG. 3. Steady-state emission and absorption spectra I'*(§) as
calculated from the steady-state photon self-energy for initial con-
ditions iTrG=(0,0) =iTrE~(0,0) = 1/2, parameters S = 1.00,
in=0.25, I'y =TIy =0, vibrational-state truncation at n =4, and
AT(0) = g2 x 0.798. The thick line corresponds to the emission co-
efficient I'(—8). Simulations calculated for 2!' steps up to a final
time of AT}« = 16 with memory time Atyen = 4.0 (defined in Ap-
pendix D).
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(a) 1 1 1
1.5 , L 1.5
] I bi-exponential ’
] I
1.0 1 !
g ,'I oscillating 1.0
> 0.5 1 i ay
4 T : %1072 €
] , BEET F05
0.0 . 'l 10 /“VM
1 i 0.5 \V
—0.5 1 —,—— I : : TR Il.lJ 13 7x10* 0.0
0 50 100 150 200 250 0.00 0.25 0.50 0.75 1.00
At Tt/

FIG. 4. (a) Photon relaxation AN(¢) = N(¢) — N for initial conditions N(0) = 0, 1G5,(0,0) = 1,and M = 10%, g/A = 4.5 x 1072, 8¢/ =
—1.00, 2/A =1.00,S = 1,7 = 0.25,k/T'y =20, /A = 1.25 x 1073, ATyper = 4.0, and time step LAt = 27*. For low solvent temperatures
encoded by 77 = 0.25, phonon truncation at n,,,x = 4 is appropriate. Main panel: #, is chosen at the response peak for each curve. (b) Global
phase diagram classifying AN(¢), obtained from the rate equations (A9). The boundary is marked by exceptional points in the relaxation
spectrum. Red, dashed line: « /T"y = 20. Inset: avoiding the transition by circumventing the critical point of the oscillatory phase.

such that 7(€2) = 0.25, which justifies truncating the phonon
occupation numbers at n < iy = 4.

Previous experiments [11] revealed that driven-dissipative
photon condensates possess hidden, nontrivial dynamics in
the second-order coherence

g(z)(t) — lim (N(t + s)N(s)) ’

s>o0 (N(s))?

despite the spectrally resolved photon number following an
equilibrium Bose-Einstein distribution. The g (¢) oscillation
frequency and decay rates as functions of I'; and «, i.e., of
the distance from true equilibrium, show a non-Hermitian
phase transition marked by an exceptional point [11]. De-
viations from this picture, obtained on the basis of the rate
equations [12,17], are to be expected when the system is
strongly out of equilibrium. Our formalism is ideally suited
for studying such non-Markovian effects.

We start the time evolution with an empty single-mode
cavity filled with an ensemble of molecules in the ground
state and drive the system into a steady state by a constant
optical pumping I'y [inset of Fig. 4(a)]. Once stationarity is
reached, a short Gaussian pulse is added [Eq. (32)] to trigger a
response of the photon field as the system is slightly displaced
from the steady state. Via quantum regression [46], the ensu-
ing relaxation is then equivalent to the spontaneous intensity
fluctuations described by g®(¢). As shown in Fig. 4(a), the
photon relaxation changes qualitatively from oscillatory to
biexponential as a function of k (observe that « /I"y is kept
fixed) [11,12]. This behavior is generic and independent of
the specific parameters chosen. For each set of parameters,
the transition between the two behaviors is characterized by
an exceptional point where the eigenvalues of the linearized
regression dynamics [12] coalesce and switch from a pair of
complex frequencies +iw — 7! to two real relaxation rates
=1, /71 > t71 [47]. We extract these parameters by fitting
the sum of two complex exponentials to the numerical results
Appendix C.

We find that the phase boundary between both behaviors
retraces qualitatively the one obtained from the rate equa-
tion model in Appendix A. Therefore, in Fig. 4(b) we show

(34)

the global dynamical phase diagram of the photon relax-
ation as a function of the drive I'y and dissipation « as
obtained from the rate equations, and compare in Fig. 5
the full quantum dynamics, Eqs. (16)—-(20), with the rate-
equation results along the red, dashed line shown in Fig. 4(b).
Evidently, the rate-equation model agrees with the full

10747 Ok
TR TS et :

I 6:’ \Z
104, 10515 0.10 i

I
101_| o
Dot

FIG. 5. Steady-state photon number N, and relaxation frequency
o and rate 77! as functions of the cavity loss « for ¥ /Ty = const =
20. Blue, solid curves: full quantum dynamics, Eqs. (16)—(20); red,
dashed curves: rate-equation model (Appendix A). Al'; = 0.796¢%,
I'f /Ty = 0.741 (obtained from Fig. 3). The vertical line marks the
exceptional point.
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10 20

0 5 10 15 20
A

FIG. 6. Photon self-energies —ImE§ (t, w), i.e., effective emis-
sion (top) and absorption (bottom) coefficients, when pumping the
system from the ground state. Parameters as in Fig. 4 except for
g/»=2.45x10"*, Q/1r =1.25, k/A = 1.0 and 7 = 0.20. Photon
number shown in white (not to scale).

quantum dynamics only near equilibrium (k/A < 1, I'y <«
1), while for strong drive and dissipation deviations occur,
indicating a breakdown of the Markov assumption inherent
to the rate-equation approach: the system becomes non-
Markovian in this stronger sense, as opposed to merely a
frequency-dependent photo-molecular coupling [13]. As seen
from Fig. 5(a), the steady-state occupation N collapses be-
yond a critical loss rate « in spite of constant «/I'y [4].
This seemingly counterintuitive effect is due to the loss of
coherence with increasing « and I'y. This decondensation
is accompanied by critical slowing down, i.e., a diverg-
ing relaxation time, >0 [Fig. 5(c)], a clear sign of
a nonequilibrium phase transition, while the fast relaxation
rate T’ remains finite. Since 7~! — 0 is possible only when
both eigenvalues are real (w = 0) [12], the decondensation
threshold must always occur in the biexponential phase; cf.
Figs. 5(a) and 5(b).

We furthermore notice that the strongly driven, nonequilib-
rium regime [upper right in Fig. 4(b)] represents a laser. That
is, the near-equilibrium photon BEC phase is qualitatively
separated from the laser phase by a hidden g®(¢) transition,
which can be circumvented via the path in parameter space
shown in the inset of Fig. 4(b).

Finally, in Fig. 6 we study the nonequilibrium dynamics
of the effective molecular emission and absorption spectra,
as seen by the photons, for stronger coupling and at lower
temperature. These results are obtained without further ap-
proximation such as memory truncation. Our method is thus
capable of temporally resolving the emergence of characteris-
tic spectral features (see also Appendix F).

IV. CONCLUSION

We have introduced a nonequilibrium auxiliary field the-
ory which faithfully describes the time-dependent quantum
dynamics of general coupled system-bath setups, here gen-
eralized to open, driven-dissipative quantum systems such
as photon BECs coupled to dye-molecule reservoirs [1] or

exciton-polariton systems [48]. Our method may also be ap-
plied to the full quantum dynamics of multiple qubits coupled
to sources of non-Markovian noise [49].

For the open photon-BEC system, we find significant non-
Markovian memory effects in the strongly driven regime
where system loss x and reservoir relaxation A become com-
parable. We uncovered the global shape of the phase diagram
partially explored in [11]. These calculations establish that
the near-equilibrium photon BEC is separated from the lasing
regime by a hidden phase transition of the photon density
response.
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APPENDIX A: RATE EQUATIONS

The rate equations for the photon and molecule number
dynamics [17,18] can be derived from the full quantum field
theory under the assumption that (in the frame rotating with
the detuning &) the photon Green functions are approximately
constant over the support of the molecule memory integrals,
which is determined by the phonon relaxation rate A. The two-
time photon Green functions obey the equations of motion
[see Eq. (7)]

t
i0,DS(t,1) :M/ A7 [S5(t,7) — S5, DIDS (P, 1)
Iy

—M/ df 51, HID> (7.1') — D=(7.1')]
’ (A1)

and

/
i9,DS(t,1) =M/ df [25 (. 1) — S5 )IDS(1,7)
fo

—Mf df 57, 1)ID” (t,7) — D=(t, D).
’ (A2)

Adding these two, one obtains a symmetrized equation of
motion in terms of the center-of-motion time 7 = (¢ +1¢')/2
in the equal-time limit ¢ = ¢’:

t
i8,D<(t,t):M/ dr [Z; (@, 1)D=(1,1)
fo

— 25, DD (,1)
+D=(t,1)X5(F, 1)
—D7 (@, D5, 1)) (A3)

Then we can write the equation of motion for the photon
number Nk () = 1D} (¢, t), including the Lindblad relaxation
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FIG. 7. Comparison of the fits directly to the left and right of the transition at large «, Upper panels: Data and best fits for several different
ansatz functions. A uniexponential decay is also fitted to underline that it is not a possible best fit, as can indeed be judged by eye. Lower
panels: The absolute error (difference of data and fit) for the two viable options fo. and foi.cxp-

term due to the cavity loss « discussed in the main text, as
t
i, D5 (t, 1) = —ik DG (¢, 1) + ngZ/ di{Tr[E~ (¢, 1)G™ (1, 1)ID; (7, 1) + Te[G=(t, D)E™ (7, t)IDg. (¢, T)
0

—Tr[E=(t,1)G” (t,1)ID;; (£, 1) — Te[G™ (¢, HE = (f, t)ID. (¢, )}, (A4)
where we have absorbed the prefactor ¢~ of Z%. Now, when the vibrational states have a rapid relaxation (i.e., are strongly
broadened by collisions with the surrounding solvent), the dynamics of the auxiliary particles in relative time (+ —t’) is
approximately stationary and independent of the dynamics in forward time 7. The vibrational states can then only have an
overall forward evolution, which is to say that a quantum going either into the ground- or excited-state manifold will end up in
vibrational state n with a fixed probability p,, where Zn pn = 1. This enables us to write, for instance,

t o0
/ le G;nr(t, ZT) ~ G< (t, t)/ d([ _ t_) ele(f—Z)e—(rT+r¢)(l—l)/zgnn/(t _ f),
0 0

t o] _ _
/0 df E;,(t,7) ~ E~(t,1) /0 d(t — 1) ert=De=(MFT)ED2e (1 1), (AS)

(

where g, . encodes the relative-time dynamics of G, (¢,t")
beyond the effect of wp and I'y |, that is, the vibrational
frequencies and relaxation. It has the property g, . (0) =
G, (t,1)/G=(t,1), such that g, (0) = p,. The analogous ex-
pression for the excited states is e, (0) = E- (¢,1)/E=(t,t).
We furthermore introduce the total number of excited
molecules as

oo
My(t) =iMTrE~(z, t):iMZE,fn(t, t)y=IME=(t,1),
n=0
and similarly for the ground state where
M—-M@)=iMTrG~(t,t)

(A6)

—iM Y G, ) = IMG=(1,1), (A7)
n=0

such that the constraint O = 1 ensures total number conser-
vation. Finally, the above assumptions ensure that the greater
functions do not possess a forward-time dependence, i.e.,

E. (t,/Y~E @t —1),

G (t,t)Y~G, (t—1). (A8)

TABLE I. Standard errors for the damped-oscillating ansatz.

K /A s(T) s(w) s(C)
1.475 1.01 x 1078 1.08 x 1078 1.29 x 10~°
1.480 2.35 x 107 1.18 x 1073 1.61 x 107!
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TABLE II. Standard errors for the biexponentially decaying ansatz.

K/H s(ti) 5(t2) s(C)
1.475 2.84 x 107 293 x 1073 2.85x 107!
1.480 4.02 x 107 1.45 x 1078 4.42 x 10710

With these definitions, and using that under the approximation
described above one can pull out the photon propagators from
the time integrals and normalize by the respective occupation
number of the ground and the excited states, we may trans-
form Eq. (A4) into

0Ny (1) = —kNi(t)
— [K(4+68k) + K* (+8)IN(OIM — M4 (1)]
+ [K*(=8) + K(=8)1Ne (1) + 1M (2)
= —kN(t) — T}F Ni(O[M — M4 (1)]
+ T [Ne(2) + 1IM4 (1), (A9)

which is the established result [17,18], and we have identified
' = I'(£8;) = 2Re K(£5;). In our case the emission and
absorption coefficients are then given via

o0
K@©) =g / d(t — ) D= (MAT)=D24(; _ 7y,
0

(A10)
where
A(r) = Z iG> (T)e,, (—T)
n,n'=0
= Y HE; (1)g,,(—T). (A1)

n,n'=0

This is to be compared with the original expression in the
quantum master equation derived via the usual Born-Markov
approximation [17,18]:

K@) = gZ /OO d@r — t_) eié(tft_)ef(l"ﬂrl“i)(tff)/Zf(t _ t_),
0

(A12)

0.3 ' ' .
T 0.2 g
O]
Hs_‘ 1 —
LS
|

50 100 150 200 250

At

where f(¢) is the polaron correlation function. An alternative
and more practical way of defining Eq. (A10), which is also
leading directly to Eq. (A9), follows by letting

K(6)=ig2[TrG<(t,t)]’1[ dt Tr[E> (¢, 1)G=(,1)]
0

=ig2[TrE<(t,t)]_1/ dr Tr[E<(t, )G (7, 1)].
’ (A13)

Defining K(§) in this way occurs with the thought in mind
that it is effectively the right-hand sides of Eq. (A13) acting
instead of their previous definitions [17,18] when parameters
are chosen such that the auxiliary-particle dynamics effec-
tively recovers the rate equations. Finally, the molecular rate
equation follows completely analogously and reads

8;MT(t) :FT[M —M¢(t)] - FiMT(t)

+ Y T NUOIM — M (1)]
k

— I [Nk (@) + 1IM 4 (1)} (A14)
APPENDIX B: DRIVEN-DISSIPATIVE PROCESSES IN
SCHWINGER-KELDYSH FORMALISM

To be self-contained, here we give a brief introduction
to the Schwinger-Keldysh formalism as it applies to open
systems. Subsequently, we show how to derive those parts
of the equations of motions for the greater and lesser Green
functions deriving from the introduction of driven-dissipative
processes. We emphasize that we make no approximations
here other than the formal diagrammatic expansion in the aux-
iliary particles. The projection as such is exact. Furthermore,
the resulting equations of motion turn out to be effectively
quadratic, which hints at the fact that their validity is rather
robust also for strong drive and dissipation.

As the simplest example, consider a cavity mode of fre-
quency wy, coupled to an environment at a low temperature
such that fiwg > B~!, is described by the Lindblad master
equation

8p = —i[Hp — pH™1 + kapa’, (B1)

X‘]‘O?‘ P TR ST IS S S S IS SR

/“:ﬁ | | —= Tpem = 24

% i — MNmem — 64
~ !
=1 !
ERE I

L] | [
0 T T T T T T T T
50 100 150 200 250
At

FIG. 8. Forward dynamics of a single photon mode k = 0 for different memory truncations. Initial conditions and parameters are
TrD<(0,0) =0, iG5(0,0) = 1, and M = 10°, g/A = 4.5 x 1075, wy/A = —1.0, k /A = 1.0, /A = 1.0, S = 1.0, i = 0.25, T’y /A = 0.05,
I'y = I'+ /40, and vibrational-state truncation at n = 4. Simulations computed for 213 steps up to a final time AT, = 512 with memory times
Atmem = {1.5, 4.0}. The steady-state occupations are lim,_, . i Tr D<(¢, ) = {8.347 x 10°, 8.446 x 10%}, which means that the short-memory

value deviates only by about 0.012.
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FIG. 9. Solution of Egs. (E2) with truncation (a'ac?) ~
(a'a)(o?) for parameters k /8§ = 27, g/8 = 2m x 27°. The negative
occupation number is not a numerical artifact but results from the
uncontrolled truncation.

with the non-Hermitian Hamiltonian
H = (wy — ik /2)d a. (B2)

In its most general formulation as given by Schwinger [50],
the formalism easily captures this kind of dynamics. The
Schwinger action that appears in the coherent-state expansion
of the nonequilibrium partition function Z is [10]

S[p%. 6] = / Al 08, — o + ik /200,
— " ({0 — w0 — ik/2)6 — ik, ¢" 1.

Note how this contains a contribution across the two
branches of the contour. The respective equations of
motion for the greater and lesser Green functions are
then

0= (i, — wy + ik /2)D=(z, 1),
0= (id, — wy — ik /2)D” (¢, 1) + ik DT (¢, 1),

(B3)

(B4)

where now the time-ordered Green function appears explic-
itly. The anti-time-ordered Green function would appear, for
instance, when coupling to a bath at finite temperature. In the

equal-time limit, these equations become
D=(t,1) = —«kD~(t,1),

D> (t,1) =«kD>(t, 1) —k[DT(t,1) + DT(t, ]

=kD”(t,t) —k[D”(t,t)+D~(t,t)], (BS)
which serves to illustrate how the commutator is preserved
over time by the quantum jumps.

To have a consistent diagrammatic expansion for the four
vertices g, I'y | and A of our theory, we expand the corre-
sponding vertices to second order in /. For the incoherent
couplings, such a two-loop expansion amounts to working in
a Hartree-Fock approximation.

APPENDIX C: DETERMINING THE OSCILLATION
FREQUENCY AND DECAY RATES OF THE
SECOND-ORDER CORRELATIONS

The density responses in the main panel of Fig. 4(a) show
the evolution of iD<(¢, t) following the Gaussian pulse (32),
where the point ¢ = 0 of the plot corresponds to the maximum
of the curve after the Gaussian pulse has been injected. The
frequency @ and decay rate 7 in the oscillatory phase and
the decay rates 71, 1, are extracted by least-squares fitting the
functions

Fosc(t) = €T [£(0) cos ot + C sin ot ],

f(@)

C
fbi‘EXP(t) = T(e_l/rl + e—t/fz) + E(C_I/Tl — e_’/TZ)

(ChH

to the numerical density responses. The quality of the fit is
then estimated by the standard error, and the oscillatory or
biexponential fit is accepted, whichever has the smaller error.
This determines whether the response is classified as oscillat-
ing or biexponentially relaxing. An illustration of the fitting
procedure is given in Fig. 7 and Tables I and II. One can see
that even for these two points directly next to the transition,
the fit classification is always unique.

— iDS(t,t) (al(t)a(t)) — Ap(t,t) ----- Re ([a(t), al (')

004 . L 1' >(1074 i 5 1 I | 3
5 N | 8
= 0 <
3 =

= 0.021 E = 0 I
S g
< o
© O

0.00 . . . —14 ‘ . . 3

0 8 16 24 32 —32 —16 0 16 32

to

7

FIG. 10. Photon mode occupation for the Jaynes Cummings model (E1) by self-consistently solving Egs. (16), (18), (20) for parameters
k/8 =27 g/8§ =21 x 27° The (red) dashed lines are the benchmark results calculated with a numerically exact method from the
corresponding von Neumann equation. Because of the good agreement, the lines overlap identically. The spectral function is defined as
Ap(t,t') = —Im(D”(t,t') — D=(¢t,t")). In the right panel, the times are t = (T + 7)/2 and t' = (Thax — 7)/2, Where Tia8 = 32.0. The
results were calculated with a step size of §df = 1072 for a number of 2!° steps.
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FIG. 11. Equal-time occupation as given by the auxiliary-particle

lesser Green functions and the corresponding numerically exact time
evolution of (¢%). The parameters are those of Fig. 10.

APPENDIX D: MEMORY TRUNCATION

Solving the equations of motion for interacting systems
numerically on the two-time grid becomes computationally
expansive when the number of grid points needs to be large.
This happens whenever the product of the fastest system fre-
quency and the required final time is not small. Any integral
over relatively fast decaying Green functions, however, will
be computable at sufficient precision over a small support
that does not grow as the two-time grid expands towards
it final size. In the same spirit, computing points far off
the “time diagonal” r = ¢’ will be superfluous because they
are negligible. In this way, by truncating the number of steps
one moves away from the time diagonal, and by restricting the
computation of the integrals to that same narrow “band,” it is
indeed possible to achieve a quasilinear scaling in the number
of grid points without losing accuracy.

The quantitative consequences of different truncation pa-
rameters ny,en, are studied in Fig. 8. Note that technically, 7mem
is not the number of points included away from the diagonal
moving in the direction (z — ¢’), but rather moving in the verti-
cal and horizontal directions ¢ and #’. A short-valued memory
Nmem = 24 results in a certain number of points inaccurately

0.10 +————t—+——————
0.08 + 1
= 0.06 T 1

\

—~

+
S~—

= 0041 +
0.02+ +

0.00 —-L—————————p s
0 20 40 60 80

AT

remaining zero. With a longer-valued memory 7y = 64,
these points attain their proper values. However, looking to
Fig. 8, we see that the influence of this is not considerable.

APPENDIX E: SIMULATION OF THE OPEN
JAYNES-CUMMINGS MODEL

A good playground for testing our methods is the simplest
special case of the Hamiltonian in Eq. (2), which is the Jaynes-
Cummings model defined by

A
Hyc = woa'a + EGZ +g@’'o™ +aoct)

=d8d'a+gla'c™ +aoc™), (ED

where 6 = wy — A. On top of the dynamics described by Hjc,
we add a cavity loss for the photon mode as shown in the main
text. From the standard master equation, one then derives the
expectation-value equations of motion as

d(a'a) = —k(a'a) —ig({a'o ™) — (ac™)),

d(0%) = 2ig{a'o ™) — (aa ™)),
3 (ac™t) = —idlac™) — g(aa+)

—ig({a'ac®) + (ot 7)). (E2)
These are, however, not closed because of the occurrence of
(a'ac?) in the last of Eqgs. (E2). In the literature, in general-
izations of Hjc to many spins, this term has been treated by
means of the heuristic truncation (a'ac?) = (a'a)(c?) [20],
which is not a controlled approximation. As shown in Fig. 9,
this can even result negative particle numbers (not a numerical
artifact). While this problem is mild for the parameters chosen
here, it becomes worse in other regimes. In particular, the
factor of M coming from the sum over many molecules in
the equation for (a'a) can lead to unphysical results. This is
a manifestation of the difficulties involved in truncating the
expectation-value hierarchy when phase coherence between
photons and molecules is important. As explained above,
the auxiliary-boson technique provides a resolution of this

1.0 1 : ———
,5 ] —— Ground states
§0.8-: —— Excited states |
= ]
8061 I
o ]
2044 1
= ]
3 ]
< 0.2 1
=

0.0 +———————————————s

0 20 40 60 80

AT

FIG. 12. Photon occupation and molecular occupations as a function of time for initial conditions N(0) =0, iTrG=(0,0) = 1, and
parameters M = 10°, g/A = 24.5 x 1075, §p/ = —1.00, Q/A =125, S =1, 71 =02, k/A =20,I1/2 =1/20 ['; /A = 1.25 x 1073. We
do not apply memory truncation and set numerical tolerances atol = 107 and rtol = 10~ in the adaptive solver for Kadanoff-Baym

equations [45].

013220-11



BODE, KAJAN, MEIRINHOS, AND KROHA

PHYSICAL REVIEW RESEARCH 6, 013220 (2024)

25 +—+—+—+——+—4—+—+———t—————

Emission

—10 0 10 20
w/A

Absorption
N oW A
(an) (an) (@)
l 1

—
o
I

0

-20 10 0 10 20

w/A

FIG. 13. Photon self-energies —ImX § (T, w) (effective emission (left) and absorption (right) coefficients). The curves shown here are cross

sections of Fig. 3.

problem. Here, this can be appreciated from Fig. 10. The
inset highlights that the unphysical negative particle numbers
have been removed by the auxiliary-particle method and that it
reproduces numerically exact results. Figure 11 shows the cor-
responding excitation density of two-level atoms, i[E=(¢, 1) —
G=(t,1)].

APPENDIX F: TIME-DEPENDENT EMISSION AND
ABSORPTION SPECTRA

The photon self-energies as defined in the main text,

Tyt =ige T E2 (L, )GS (), (FI)
can be used to define the effective emission and absorp-
tion spectra via which the molecules act on the photons.
This can also be understood by comparing the above ex-

pression for the self-energies with Eq. (A13), which we
defined as

K(é):igZ[TrG<(t,r)r1[ dr Tr[E”(t,7)G=(7, 1)]
0

=ig2[TrE<(t,t)]_1/ dr Tr[E=(t,D)G™ (7, 1)].
' (F2)

Here we show more data complementing Fig. 3. The evo-
lution toward the steady state of the occupation numbers is
shown in Fig. 12, while additional cross section through the
effective spectra presented in Fig. 3 are given in Fig. 13.
To obtain these curves, the self-energies are first evolved
with their full dependence on (¢,7’) and then transformed
to so-called Wigner coordinates T = (t +1')/2, T =t — 1.
The latter relative-time variable is then Fourier transformed
to obtain the spectra shown in Fig. 13.
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