001     1023855
005     20250203103438.0
024 7 _ |a 10.1109/IEDM45741.2023.10413853
|2 doi
037 _ _ |a FZJ-2024-01857
041 _ _ |a English
100 1 _ |a Pedretti, G.
|0 P:(DE-HGF)0
|b 0
111 2 _ |a 2023 International Electron Devices Meeting (IEDM)
|c San Francisco
|d 2023-12-09 - 2023-12-13
|w USA
245 _ _ |a Zeroth and higher-order logic with content addressable memories
260 _ _ |c 2023
|b IEEE
300 _ _ |a 1-4
336 7 _ |a CONFERENCE_PAPER
|2 ORCID
336 7 _ |a Conference Paper
|0 33
|2 EndNote
336 7 _ |a INPROCEEDINGS
|2 BibTeX
336 7 _ |a conferenceObject
|2 DRIVER
336 7 _ |a Output Types/Conference Paper
|2 DataCite
336 7 _ |a Contribution to a conference proceedings
|b contrib
|m contrib
|0 PUB:(DE-HGF)8
|s 1710306779_30008
|2 PUB:(DE-HGF)
520 _ _ |a Content Addressable Memories (CAMs) are attracting interest as in-memory computational primitives, thanks to the massively parallel search operation. Multiple flavors of CAMs have been realized with nanoscale memory technology, pushing their performance towards low power and latency. In this work, we demonstrate how to use CAMs for asserting and solving zeroth order and higher-order logic, in the form of Boolean satisfiability (SAT) and satisfiability modulo theories (SMT), respectively. We demonstrate a ~6.5× lower area and ~4× lower energy per search compared with state-of-the-art in-memory optimization problem solvers, such as Hopfield Neural Network (HNN), with up to 175× faster time-to-solution for problems with 150 variables.
536 _ _ |a 5234 - Emerging NC Architectures (POF4-523)
|0 G:(DE-HGF)POF4-5234
|c POF4-523
|f POF IV
|x 0
588 _ _ |a Dataset connected to DataCite
700 1 _ |a Böhm, F.
|0 P:(DE-HGF)0
|b 1
700 1 _ |a Hizzani, M.
|0 P:(DE-Juel1)190961
|b 2
|u fzj
700 1 _ |a Bhattacharya, T.
|0 P:(DE-HGF)0
|b 3
700 1 _ |a Bruel, P.
|0 P:(DE-HGF)0
|b 4
700 1 _ |a Moon, J.
|0 P:(DE-HGF)0
|b 5
700 1 _ |a Serebryakov, S.
|0 P:(DE-HGF)0
|b 6
700 1 _ |a Strukov, D.
|0 P:(DE-HGF)0
|b 7
700 1 _ |a Strachan, J. P.
|0 P:(DE-Juel1)188145
|b 8
|u fzj
700 1 _ |a Ignowski, J.
|0 P:(DE-HGF)0
|b 9
700 1 _ |a Van Vaerenbergh, T.
|0 P:(DE-HGF)0
|b 10
700 1 _ |a Beausoleil, R.
|0 P:(DE-HGF)0
|b 11
700 1 _ |a Mohseni, M.
|0 P:(DE-HGF)0
|b 12
773 _ _ |a 10.1109/IEDM45741.2023.10413853
856 4 _ |u https://juser.fz-juelich.de/record/1023855/files/2023%20IEDM%20Pedretti%20Zeroth_and_higher-order_logic_with_content_addressable_memories.pdf
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/1023855/files/2023%20IEDM%20Pedretti%20Zeroth_and_higher-order_logic_with_content_addressable_memories.gif?subformat=icon
|x icon
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/1023855/files/2023%20IEDM%20Pedretti%20Zeroth_and_higher-order_logic_with_content_addressable_memories.jpg?subformat=icon-1440
|x icon-1440
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/1023855/files/2023%20IEDM%20Pedretti%20Zeroth_and_higher-order_logic_with_content_addressable_memories.jpg?subformat=icon-180
|x icon-180
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/1023855/files/2023%20IEDM%20Pedretti%20Zeroth_and_higher-order_logic_with_content_addressable_memories.jpg?subformat=icon-640
|x icon-640
|y Restricted
909 C O |o oai:juser.fz-juelich.de:1023855
|p VDB
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 2
|6 P:(DE-Juel1)190961
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 8
|6 P:(DE-Juel1)188145
913 1 _ |a DE-HGF
|b Key Technologies
|l Natural, Artificial and Cognitive Information Processing
|1 G:(DE-HGF)POF4-520
|0 G:(DE-HGF)POF4-523
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-500
|4 G:(DE-HGF)POF
|v Neuromorphic Computing and Network Dynamics
|9 G:(DE-HGF)POF4-5234
|x 0
914 1 _ |y 2024
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)PGI-14-20210412
|k PGI-14
|l Neuromorphic Compute Nodes
|x 0
980 _ _ |a contrib
980 _ _ |a VDB
980 _ _ |a I:(DE-Juel1)PGI-14-20210412
980 _ _ |a UNRESTRICTED


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21