

TOWARDS THE DEVELOPMENT OF A VERY COLD NEUTRON SOURCE FOR THE HIGH BRILLIANCE NEUTRON SOURCE (HBS)

14.02.2024 | DALINI D. MAHARAJ

VERY COLD NEUTRONS

Range of very cold neutrons

• 10 - 100 Å

- Cannot produce reasonable intensities from conventional cold sources!!
 - Neutron spectra follow a Maxwellian shape
 - \circ For long neutron wavelengths (low energies) spectrums falls off as λ^{-5}

POTENTIAL FOR VERY COLD NEUTRONS

Access to longer length and time scales – large biological structures on the nanoscale

Page 3

- Refracting power $\approx \lambda^2$
 - => Application of optical methods to control neutron beams

POTENTIAL FOR VERY COLD NEUTRONS

	Resolution (at fixed geometry)	Intensity (at fixed resolution)
SANS	λ-1	λ^0
Reflectometry	λ-1	λ ^{2(?)}
TOF-INS	λ-3	λ^2
NSE	λ-3	λ^2 - λ^4

[1] J.M Carpenter and B.J. Micklich, ANL (05/42) (2005).

Access to longer length and time scales – large biological structures on the nanoscale

Page 4

- Refracting power $\approx \lambda^2$
 - => Application of optical methods to control neutron beams
- Predicted gains in improvement in instrument performance

WHY NOW?

Previously, lack of available neutron cross sections at low temperatures for moderators of interest

 Neutron scattering kernels developed through the HighNESS project for many candidate moderator and reflector materials

Page 5

Opportunity to explore VCN development for HBS

SPALLATION VS HI-CANS

Comparison of Source Optimization Objectives

Hi-CANS ~ 0.02 n/p

Optimize brilliance

$$B = \frac{d}{A\Omega(1\%\Delta\lambda/\lambda)\Delta t}$$

Spallation ~ 27 n/p

Optimize overall time-integrated intensity

MODERATION OF NEUTRONS

Moderating properties of material

- Coupling strength to the neutron field via cross section
- Excitation spectrum of material e.g. phonons

BUT phonon cross section for neutron with $E < k_B T_D$

$$\left(\frac{E}{k_b T_D}\right)^3$$

Very cold moderation requires low, dispersion-free "quantum" excitation modes

- Einstein modes displacement of confined molecules
- Molecular rotations
- Librations
- Paramagnetic excitations

Solid D₂

- Rotational modes and vibrational modes
- Operates at 5 K

Pros:

- Low neutron absorption
- High scattering cross section

Cons

Long neutron path length dilutes neutron cloud

Methane (in phase II)

- Phase II below 20.4 K
- Free rotor at O_h site

Pros:

 Very good moderator due to high density of hydrogen atoms

Cons:

 Radiolysis, or radical formation needs to be managed

Clathrates (THF, methane)

- Cages host guest molecules including
 - O₂ (ZF 0.4meV)
 - CH₄
 - THF

Cons:

• Operation at 2.4 K

HIGH BRILLIANCE MODERATOR DESIGN

Compact 2D Cold Parahydrogen Moderator

Page 9

WORKFLOW IN PHITS

CALCULATED QUANTITIES IN PHITS

Surface Tally

- Define detector at exit of channel and tally neutrons in energy, time, angular crossing bins
- Can estimate brilliance directly from this method

$$B = \frac{d}{A \Omega(1\%\Delta\lambda/\lambda)\Delta t}$$

CALCULATED QUANTITIES IN PHITS

Point Tally

- Deterministically estimate of the flux contribution due to every source or collision event at a point,
 - Scattering probability
 - T, transmission probability for no interaction between event and detector points

$$T = \exp\left(-\int_0^R \Sigma(s) ds\right)$$

$$\Phi = w \frac{p(\mu)}{2\pi R^2} \exp \left[-\int_0^R \Sigma(s) ds \right].$$

SURFACE CROSSING TALLY VS POINT TALLY

MAJOR CHALLENGES AND CONSIDERATIONS

Computational demands of simulations

Practical considerations

- ➤ Moderating to very cold neutron energies within compact volume
- ➤ Managing heat removal from the moderator
 - Use of aluminum foams to improve thermal conductivity

NEXT STEPS

Computational

- Implementation of point tally to get first "feel"
- >Accelerate duration for each simulation use neutron source characteristics of moderator

Page 15

- Very high statistics required => demand for raw computation power
 - Apply to JSC for computation time. JUREAP program

Upcoming Secondment

- > Implementation of OpenMC to perform simulations with clathrates
- > Techniques and tools for multi-parameter optimization

HBS Team

J. Baggemann

Th. Brückel

J. Chen

T. Claudio-Weber

T. Cronert (†)

Q. Ding

P.-E. Doege

M. El Barbari

T. Gutberlet

J. Li

K. Lieutenant

Z. Ma

E. Mauerhofer

N. Ophoven

U. Rücker

N. Schmidt

A. Schwab

E. Vezhlev

J. Voigt

P. Zakalek

- Design, verification,

ZEA-1:

Y. Bessler

R. Hanslik

R. Achten

F. Löchte

M. Strothmann

- Engineering

IKP-4:

O. Felden

R. Gebel

A. Lehrach

M. Rimmler

R. Similon

- Nuclear physics

INM-5:

B. Neumaier

- Radio isotopes

instrumentation

S. Böhm

R. Nabbi

- Nuclear simul.

Ch.Haberstroh

M. Klaus

S. Eisenhut

C. Lange

- Liquid H₂, AKR-2

H. Podlech

O. Meusel

- Accelerator

W. Barth

- Accelerator

J. Fenske

- Instrumentation

HBS Innovationpool Project

https://hbs.fz-juelich.de/

REFERENCES

- [1] J.M Carpenter and B.J. Micklich, ANL (05/42) (2025).
- [2] L. Zanini, arXiv:2309.17333v3 [physics.ins-det] (2023).
- [3] S. Xu, EPJ Web of Conferences 286 06003 (2023)

HI-CANS

From Neutron Generation to Extraction

Hi-CANS ~ 0.02 n/p

Optimize brilliance

$$B = \frac{d}{A \Omega(1\%\Delta\lambda/\lambda)\Delta t}$$

Source and Moderator Features

- Compact moderator design
- High density neutron clouds in moderators

Brightness Optimization

- Selection of suitable materials
- Moderator design tailored to instruments
- Clever use of optics
 - Efficient transfer of neutron phase space

MODERATION OF NEUTRONS

Proceeds via hard scattering from atomic species in moderating medium

Mean logarithmic reduction in neutron energy, ξ

$$\xi = \ln\left(\frac{E_0}{E}\right)$$

Efficiency of a moderator, moderation ratio, MR

$$MR = \left(\xi \cdot \frac{\Sigma_s}{\Sigma_a}\right)$$

Diffusion length, L

$$L = \left(\frac{D}{\Sigma_a}\right)^{1/2}$$

Parameters for	common therma	moderators
i didilictoro loi	COMMISSION CONTRACTOR	illoadiatois

	ξ [barn]	MR	L [cm]
Polyethylene (PE)	0.91	86	2.08
D_2O	0.57	5720	141
$H_2O + D_2O$	0.81	110	7.12
Be	0.21	128	18.33

P. Zakalek et al, Journal of Neutron Research 23 pp. 185-200 (2021).

Neutrons can also excite vibrational modes in solid state materials

$$\sigma_1^0 \sim \left(\frac{m}{M}\right) \left(\frac{E_0}{k\theta_D}\right)^3$$

Page 19

- Solid D₂
- Methane (in phase II)
- Clathrates THF-hydrates, methane hydrate
- > Transition to phase II below 20.4 K
 - Partially orientationally ordered state

Disordered sites - O_h

√ Weak CEF

✓ No molecular field

Almost free quantum rotor!

Ordered sites - D_{2d}

-Librational modes

-Rotational tunneling

Y. Shin et al, Nuc. Ins. Meth Phys Res A 620 pp. 382-390 (2010).

- Solid D₂
- Methane (in phase II)
- Clathrates THF-hydrates, methane hydrate

Moderation by: rotational and translational modes (phonons)

Pros

- Very low neutron absorption cross section and small nuclear mass
- Operated at 5 K
- Small upscattering cross section

Cons – long neutron path length

- Spreads out neutron cloud
- Suffer broadening of pulse by a factor of five

- Solid D₂
- Methane (in phase II)
- Clathrates THF-hydrates, methane hydrate
- > Transition to phase II below 20.4 K
 - Partially orientationally ordered state

Y. Shin et al, Nuc. Ins. Meth Phys Res A 620 pp. 382-390 (2010).

- Solid D₂
- Methane (in phase II)
- Clathrates THF-hydrates, methane hydrate
- ➤ Transition to phase II below 20.4 K
 - Partially orientationally ordered state

Disordered sites - O_h

√ Weak CEF

✓ No molecular field

Almost free quantum rotor!

Ordered sites - D_{2d}

- -Librational modes
- -Rotational tunneling

S. Grieger et al, J. Chem. Phys. 109 3161-3175 (1998).

Page 23

- Solid D₂
- Methane
- Clathrates THF-hydrates, methane hydrate
- Inclusion compounds containing nanovoids
- Very large unit cell; a ~ 17 Å
- Cages can host guest molecules
 - \rightarrow THF C₄H₈O ()
 - > Oxygen O₂ (triplet GS with zero-field splitting of 0.4 meV)
 - ➤ Methane CH₄ (discussed previously)

 $Fd\bar{3}m$ SG:227

A. Falenty et al, Nature 516 pp. 231-233 (2014).

- Solid D₂
- Methane
- Clathrates THF-hydrates, methane hydrate
- Inclusion compounds containing nanovoids
- Very large unit cell; a ~ 17 Å
- Cages can host guest molecules
 - \rightarrow THF C₄H₈O
 - \triangleright Oxygen O₂ (triplet GS E* = 0.4 meV)
 - ➤ Methane CH₄ (discussed previously)
- HighNESS Cross sections developed for THF-clathrates

 $Fd\bar{3}m$ SG:227

A. Falenty et al, Nature 516 pp. 231-233 (2014).

V. Czamler et al, EPJ Web of Conferences 286 05004 (2023).

- Solid D₂
- Methane
- Clathrates THF-hydrates, methane hydrate
- Cages can host guest molecules
 - \rightarrow THF C₄H₈O ()
 - \triangleright Oxygen O₂ (triplet GS E* = 0.4 meV)
 - ➤ Methane CH₄ (discussed previously)
- HighNESS Cross sections developed for THF-clathrates
- Methane clathrate advantage over solid methane?
- THF-hydrate high albedo for cold neutrons

V. Czamler et al, EPJ Web of Conferences 286 05004 (2023).

V. Czamler et al, EPJ Web of Conferences 286 05004 (2023).

HIGH BRILLIANCE MODERATOR DESIGN

Compact 2D Cold Parahydrogen Moderator

