001     1024052
005     20250204113814.0
024 7 _ |a 10.1016/j.ecmx.2024.100561
|2 doi
024 7 _ |a 10.34734/FZJ-2024-01942
|2 datacite_doi
024 7 _ |a WOS:001206649000001
|2 WOS
037 _ _ |a FZJ-2024-01942
082 _ _ |a 333.7
100 1 _ |a Holtwerth, Alexander
|0 P:(DE-Juel1)180106
|b 0
|e Corresponding author
245 _ _ |a Closed loop model predictive control of a hybrid battery-hydrogen energy storage system using mixed-integer linear programming
260 _ _ |a Amsterdam
|c 2024
|b Elsevier
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1710481880_1773
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a The derivation of an efficient operational strategy for storing intermittent renewable energies using a hybrid battery-hydrogen energy storage system is a difficult task. One approach for deriving an efficient operational strategy is using mathematical optimization in the context of model predictive control. However, mathematical optimization derives an operational strategy based on a non-exact mathematical system representation for a specified prediction horizon to optimize a specified target. Thus, the resulting operational strategies can vary depending on the optimization settings. This work focuses on evaluating potential improvements in the operational strategy for a hybrid battery-hydrogen energy storage system using mathematical optimization. To investigate the operation, a simulation model of a hybrid energy storage system and a tailor-made mixed integer linear programming optimization model of this specific system are utilized in the context of a model predictive control framework. The resulting operational strategies for different settings of the model predictive control framework are compared to a rule-based controller to show the potential benefits of model predictive control compared to a conventional approach. Furthermore, an in-depth analysis of different factors that impact the effectiveness of the model predictive controller is done. Therefore, a sensitivity analysis of the effect of different electricity demands and resource sizes on the performance relative to a rule-based controller is conducted. The model predictive controller reduced the energy consumption by at least 3.9 % and up to 17.9% compared to a rule-based controller. Finally, Pareto fronts for multi-objective optimizations with different prediction and control horions are derived and compared to the results of a rule-based controller. A cost reduction of up to 47 % is achieved by a model predictive controller with a prediction horizon of 7 days and perfect foresight.
536 _ _ |a 1122 - Design, Operation and Digitalization of the Future Energy Grids (POF4-112)
|0 G:(DE-HGF)POF4-1122
|c POF4-112
|f POF IV
|x 0
536 _ _ |a 1121 - Digitalization and Systems Technology for Flexibility Solutions (POF4-112)
|0 G:(DE-HGF)POF4-1121
|c POF4-112
|f POF IV
|x 1
536 _ _ |a LLEC::P2G++ / Saisonale Speicherung in gekoppelten, regenerativen Energiesystemen mittels Power-to-Gas (P2G): Demonstration großskaliger Wasserstoffspeicherung mittels innovativer LOHC-Technologie im Verbund mit einer KWK-Anlage, dynamischer Pipeline und (03SF0573)
|0 G:(BMBF)03SF0573
|c 03SF0573
|x 2
536 _ _ |a LLEC - Living Lab Energy Campus (LLEC-2018-2023)
|0 G:(DE-HGF)LLEC-2018-2023
|c LLEC-2018-2023
|x 3
588 _ _ |a Dataset connected to CrossRef, Journals: juser.fz-juelich.de
650 2 7 |a Others
|0 V:(DE-MLZ)SciArea-250
|2 V:(DE-HGF)
|x 0
650 1 7 |a Energy
|0 V:(DE-MLZ)GC-110
|2 V:(DE-HGF)
|x 0
700 1 _ |a Xhonneux, André
|0 P:(DE-Juel1)8457
|b 1
|u fzj
700 1 _ |a Müller, Dirk
|0 P:(DE-Juel1)172026
|b 2
|u fzj
773 _ _ |a 10.1016/j.ecmx.2024.100561
|g Vol. 22, p. 100561 -
|0 PERI:(DE-600)3010114-1
|p 100561 -
|t Energy conversion and management: X
|v 22
|y 2024
|x 2590-1745
856 4 _ |y OpenAccess
|u https://juser.fz-juelich.de/record/1024052/files/Paper.pdf
856 4 _ |y OpenAccess
|x icon
|u https://juser.fz-juelich.de/record/1024052/files/Paper.gif?subformat=icon
856 4 _ |y OpenAccess
|x icon-1440
|u https://juser.fz-juelich.de/record/1024052/files/Paper.jpg?subformat=icon-1440
856 4 _ |y OpenAccess
|x icon-180
|u https://juser.fz-juelich.de/record/1024052/files/Paper.jpg?subformat=icon-180
856 4 _ |y OpenAccess
|x icon-640
|u https://juser.fz-juelich.de/record/1024052/files/Paper.jpg?subformat=icon-640
909 C O |o oai:juser.fz-juelich.de:1024052
|p openaire
|p open_access
|p OpenAPC
|p driver
|p VDB
|p openCost
|p dnbdelivery
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 0
|6 P:(DE-Juel1)180106
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 1
|6 P:(DE-Juel1)8457
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 2
|6 P:(DE-Juel1)172026
913 1 _ |a DE-HGF
|b Forschungsbereich Energie
|l Energiesystemdesign (ESD)
|1 G:(DE-HGF)POF4-110
|0 G:(DE-HGF)POF4-112
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-100
|4 G:(DE-HGF)POF
|v Digitalisierung und Systemtechnik
|9 G:(DE-HGF)POF4-1122
|x 0
913 1 _ |a DE-HGF
|b Forschungsbereich Energie
|l Energiesystemdesign (ESD)
|1 G:(DE-HGF)POF4-110
|0 G:(DE-HGF)POF4-112
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-100
|4 G:(DE-HGF)POF
|v Digitalisierung und Systemtechnik
|9 G:(DE-HGF)POF4-1121
|x 1
914 1 _ |y 2024
915 p c |a APC keys set
|2 APC
|0 PC:(DE-HGF)0000
915 p c |a Local Funding
|2 APC
|0 PC:(DE-HGF)0001
915 p c |a DFG OA Publikationskosten
|2 APC
|0 PC:(DE-HGF)0002
915 p c |a DEAL: Elsevier 09/01/2023
|2 APC
|0 PC:(DE-HGF)0125
915 p c |a DOAJ Journal
|2 APC
|0 PC:(DE-HGF)0003
915 _ _ |a Creative Commons Attribution CC BY 4.0
|0 LIC:(DE-HGF)CCBY4
|2 HGFVOC
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0501
|2 StatID
|b DOAJ Seal
|d 2023-04-12T14:51:22Z
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0500
|2 StatID
|b DOAJ
|d 2023-04-12T14:51:22Z
915 _ _ |a Fees
|0 StatID:(DE-HGF)0700
|2 StatID
|d 2023-10-27
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b DOAJ : Anonymous peer review
|d 2023-04-12T14:51:22Z
915 _ _ |a Article Processing Charges
|0 StatID:(DE-HGF)0561
|2 StatID
|d 2023-10-27
915 _ _ |a Mirror Journal
|0 StatID:(DE-HGF)3101
|2 StatID
|d 2023-10-27
|w ger
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b ENERG CONVERS MAN-X : 2022
|d 2024-12-27
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2024-12-27
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2024-12-27
915 _ _ |a WoS
|0 StatID:(DE-HGF)0112
|2 StatID
|b Emerging Sources Citation Index
|d 2024-12-27
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2024-12-27
915 _ _ |a IF >= 5
|0 StatID:(DE-HGF)9905
|2 StatID
|b ENERG CONVERS MAN-X : 2022
|d 2024-12-27
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)IEK-10-20170217
|k IEK-10
|l Modellierung von Energiesystemen
|x 0
980 1 _ |a FullTexts
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)IEK-10-20170217
980 _ _ |a APC
981 _ _ |a I:(DE-Juel1)ICE-1-20170217


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21