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A B S T R A C T   

The derivation of an efficient operational strategy for storing intermittent renewable energies using a hybrid 
battery-hydrogen energy storage system is a difficult task. One approach for deriving an efficient operational 
strategy is using mathematical optimization in the context of model predictive control. However, mathematical 
optimization derives an operational strategy based on a non-exact mathematical system representation for a 
specified prediction horizon to optimize a specified target. Thus, the resulting operational strategies can vary 
depending on the optimization settings. 

This work focuses on evaluating potential improvements in the operational strategy for a hybrid battery- 
hydrogen energy storage system using mathematical optimization. To investigate the operation, a simulation 
model of a hybrid energy storage system and a tailor-made mixed integer linear programming optimization 
model of this specific system are utilized in the context of a model predictive control framework. The resulting 
operational strategies for different settings of the model predictive control framework are compared to a rule- 
based controller to show the potential benefits of model predictive control compared to a conventional 
approach. Furthermore, an in-depth analysis of different factors that impact the effectiveness of the model 
predictive controller is done. Therefore, a sensitivity analysis of the effect of different electricity demands and 
resource sizes on the performance relative to a rule-based controller is conducted. The model predictive 
controller reduced the energy consumption by at least 3.9 % and up to 17.9% compared to a rule-based 
controller. Finally, Pareto fronts for multi-objective optimizations with different prediction and control hori
zons are derived and compared to the results of a rule-based controller. A cost reduction of up to 47 % is achieved 
by a model predictive controller with a prediction horizon of 7 days and perfect foresight.   

1. Introduction 

In recent years, the share of renewable energies in the German en
ergy mix has been increasing to reduce the emission of greenhouse 
gasses. Especially the share of renewable energies from solar and wind 
has been increasing recently [1]. However, the electricity produced by 
solar and wind power plants is highly volatile [2] due to the high de
pendency on environmental conditions. To achieve independence from 
fossil energy sources, decentralized energy storage systems can be uti
lized to mitigate the intermittent nature of renewable energy generation 
on the scale of minutes up to seasonal variations in energy availability 
[3]. Thus, efficient large-scale storage solutions are needed to cope with 
this large variety of different time scales on which the fluctuations in 
energy production occur [4]. Hybrid energy storage systems can lead to 

a cost-effective tradeoff between highly efficient short-term energy 
storage using battery storage systems (BSS) and cost-effective large- 
scale, long-term energy storage using hydrogen storage systems (HSS) 
[5]. 

The chosen energy management strategy (EMS) is essential for the 
longevity and efficiency of hybrid energy systems [6]. Therefore, many 
different energy management strategies have been proposed in the 
literature. A review of different control algorithms was done by Van 
et al. [7]. Model predictive control (MPC) is one approach widely 
adopted in literature as it provides the possibility of combining forecasts 
regarding the energy price, the available resources, and the demands to 
derive an optimal schedule for the energy system [8]. 

The optimal scheduling of hybrid battery-hydrogen energy storage 
systems has been an active field of research for many years now. In 2003 
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Korpaas et al.[9] incorporated a hydrogen storage system in a system 
with an intermittent stochastic energy source and an uncertain energy 
demand, showing the benefits of utilizing mathematical optimization to 
derive the operational strategy. Cau et al. [10] investigated the impact of 
mathematical optimization compared to a rule-based operation of a 
hybrid energy system using a mixed integer linear programming (MILP) 
formulation in 2014, revealing the potential of utilizing mathematical 
optimization with a cost reduction of about 15 %. In 2015, Valverde 
et al. [11] experimentally validated their model predictive controller 
and compared the derived operational strategy to a rule-based controller 
(RBC), showing a 30% reduction in operational cost in a real-world 
experiment. More recently, Daneshvar et al. [12] derived an MPC 
using the market participation of hydrogen energy storages in a day- 
ahead market. Gbadega et al. [13] investigated the impact of incorpo
rating disturbance prediction on the performance of an EMS using an 
adaptive MPC to reduce the operating cost of a hybrid-energy storage 
system. Furthermore, Huang et al. [14] developed an economic model 
predictive controller with a scheduling correction algorithm to achieve a 
tradeoff between the computational time and the scheduling accuracy. 

Besides the advances in MPC, RBC remains the prevalent energy 
management strategy in practical applications for renewable energy 
systems with hydrogen storage [15], due to the simplicity of RBC and 
relative ease of implementation [16]. Thus, RBCs are used in recent 
literature to control hydrogen energy storage systems. Le et al. [5] uti
lized a rule-based controller as EMS in their study on the optimal sizing 
of a hybrid energy storage system. Similarly, Modu et al. [17] utilized a 
rule-based EMS for their hybrid renewable energy storage system to 
manage the power flow of their components. Furthermore, Li et al. [18] 
utilized a hysteresis band-based power management strategy in their 
multi-objective objective optimization approach to determine the 
optimal system size. Moreover, Šimunović et al. [19] utilized several 
rule-based algorithms as EMS to investigate the effect of capacity losses 
on the performance of stand-alone hybrid battery-hydrogen energy 
storage systems. A techno-economic assessment of integrating hydrogen 
energy storage was done by Alili et al. [20] using a rule-bases EMS. 

Hence, RBCs are still used as a benchmark to show the performance 
increases to be gained from utilizing mathematical optimization to 
derive the optimal operational strategy. Clarke et al. [21] compared 
their two-layer economic model predictive controller to a conventional 
rule-based controller and found that the operating cost and the CO2 
emissions can be decreased by 5–10% utilizing model predictive control. 
Gonzalez-Rivera et al. [22] benchmarked their model predictive 
controller for the operation of a hybrid charging station against a rule- 
based controller. The model predictive controller was found to reduce 
the utilization cost by 25.3%. In 2021, Yamashita et al. [23] achieved a 
5% to 9% decreased operation cost utilizing their two-level hierarchal 
model predictive controller in comparison to an RBC. Li et al. [24] 
compared their power management approach based on game theory for 
a hybrid battery-hydrogen energy system with a model predictive 
controller and a rule-based controller. Kumar et al. [25] utilized a rule- 
based controller and a model predictive controller as benchmarks for 
their two-layer EMS with a fuzzy control logic in a supervisory layer. 
Furthermore, in 2023, Thaler et al. [26] showed that by utilizing MPC, 
the system size could be reduced by 12% in comparison to an RBC while 
fulfilling the system requirements. However, to the best of the author’s 
knowledge, no extensive investigations on factors such as energy 
availability, the season, or additional boundary conditions impacting 
the performance of MPC in comparison to RBC exist. 

Furthermore, the prediction horizon, as well as the control horizon 
chosen for the MPC, are generally considered to be constant in the 
literature. As stated by Shahzad et al. [27], long-prediction horizons 
pose a challenge for the MPC technique because longer prediction ho
rizons might increase the computational complexity. Therefore, most 
MPC approaches utilize a prediction horizon of 24 h or less. For instance, 
Garcia-Torres et al. [28] derived a hierarchical model predictive 
controller to optimize the operation of a hybrid energy system with a 

prediction horizon of up to 24 h. Valverde et al. [11] optimized the 
operation of a real-world hybrid energy system using a prediction ho
rizon of 10 h. Even though the computational resources have been 
increasing for the past decades [29], recent studies still utilize a short 
prediction horizon. Abdelghany et al. [30] utilized a prediction horizon 
of 24 h to optimize the operation of a hydrogen-based energy storage 
system. Similarly, Abdelghany et al. [31] utilized a prediction horizon of 
24 h in their stochastic model predictive controller while stating that a 
longer prediction horizon would be feasible. In a recent work, Abdel
ghany et al. [8] developed a hierarchical model predictive controller 
with a prediction horizon of 24 h in the high-level controller. Similarly, 
Shen et al. [32] developed a multi-time scale rolling horizon optimiza
tion approach for a hybrid energy storage system while considering a 
prediction horizon of 24 h. Furthermore, in a recent study, Thaler et al. 
[26] utilized an MPC approach with a prediction horizon of 24 h while 
adding additional terms to the cost function to incentivize energy stor
age. However, Thaler et al. [26] state that more efficient thermal energy 
storage should be achievable with longer prediction horizons. Cardona 
et al. [33] showed that utilizing long prediction horizons of up to 7 days 
increases the performance of their MPC approach for an on-site green 
hydrogen production and refueling station, showing that the consider
ation of long prediction horizons can increase the system performance. 
To the best of the author’s knowledge, for grid-connected hybrid 
battery-hydrogen energy storage systems, no extensive studies exist 
focusing on the impact of a varying prediction horizon length, a varying 
control horizon length, and a varying price prediction horizon length on 
Pareto optimal solutions of an MPC framework utilizing multi-objective 
optimizations. 

This work’s contribution is an extensive investigation of the impact 
of different settings influencing the performance of an MPC. Therefore, a 
detailed mixed integer linear programming (MILP) optimization model 
is derived using a data-driven modeling approach that makes use of 
open-source simulation models of the components of the energy storage 
system. The resulting operational strategies of the MPC are validated by 
a simulation model derived in Modelica and compared to the operation 
derived by a classical RBC. 

First, this work thoroughly analyses the impact of different external 
conditions, like the impact of seasonal availability of solar energy on the 
performance of an MPC compared to an RBC. Furthermore, the impact of 
different demand and resource sizes and boundary conditions on the 
performance of the MPC compared to an RBC is investigated. This 
investigation is carried out by simulating the yearly energy consumption 
of the energy system for 27 different settings for each controller. The 
second contribution is an extensive investigation of the potential bene
fits gained from utilizing long prediction horizons in the optimization 
problem to control the hybrid battery-hydrogen energy storage system. 
This is done by deriving multiple Pareto fronts for multi-objective op
timizations to minimize electricity consumption and operational costs. 
Therefore, the yearly energy consumption for 102 different settings in 
the MPC framework is evaluated. Such extensive investigations using a 
simulation model as a substitute for the real-world system can help 
identify the most critical influencing factors for the selected model 
predictive control approach before utilizing it on the real-world system. 
Thus, this study shows a comprehensive overview of the factors 
impacting the performance of a model predictive controller. The key 
aspects of this work are the following:  

• Derivation of a MILP optimization model making use of a Modelica 
simulation model  

• Utilization of the optimization model for MPC of the hybrid battery- 
hydrogen energy storage system via an MPC framework  

• Sensitivity analysis of the performance of an MPC in comparison to 
an RBC  

• Investigation of the impact of different modeling parameters on the 
effectiveness of the MPC 
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• Analysis of the influence of the control and prediction horizon on the 
Pareto optimal solutions for a multi-objective cost and energy con
sumption minimization 

The sections of this work are ordered as follows: The simulation and 
optimization model, as well as the MPC framework, are described in 
Section 2. Section 3 describes the conducted case studies. The results of 
the case study are shown in Section 4. Finally, Section 5 discusses the 
results and draws a conclusion. 

2. Methods 

The following section describes the simulation model in 2.1. For the 
optimization problem, the nonlinear operational behavior of the fuel 
cell, electrolyzer, and compressor are modeled as piecewise linear 
functions using the modeling toolbox LinMOG as described in Section 
2.2. The optimization problem is derived in Section 2.3. Finally, the 
interaction between the simulation model of the whole energy system 
and the optimization problem in the scope of the model predictive 
control framework is described in 2.4. 

2.1. Simulation model 

The energy system consists of a PV park for generating renewable 
energy, an electricity demand that needs to be fulfilled, a BSS for effi
cient short-term storage, and an HSS for long-term energy storage. 
Furthermore, the energy system is connected to the electrical grid, so 
electrical energy is always available. A local grid connects all compo
nents and all consumers. The local grid is modeled as an ideal conductor 
such that no transmission losses occur. A sketch of the energy system is 
shown in Fig. 1. 

The simulation model is derived using the modeling language 
Modelica to enable the utilization of open-source component models 
developed in the literature. The utilized electrolyzer and fuel cell models 
are based on the models developed in the TransiEnt library [34]. The 
electrolyzer model is based on experimental data as explained in [35], 
while the fuel cell stack model is based on a detailed simulation model, 
including a pressure and temperature model. The models selected in this 
work approximate the hydrogen consumption and production of the fuel 
cell and the electrolyzer. The simulated hydrogen output of the elec
trolyzer nH2,ey as a function of the power input pey is shown in Fig. 2 (a). 
The hydrogen consumption of the fuel cell nH2,fc as a function of the 

electricity output pfc is shown in Fig. 2 (b). The electrolyzer model 
achieves an efficiency of 63 % based on the lower heating value of 
hydrogen LHV  = 241.818 kJ/mol, which is similar to values reported in 
literature [36]. Furthermore, the fuel cell model achieves an efficiency 
of 50 % based on the LHV, which is similar to values reported in liter
ature [37]. The inlet pressure of the fuel cell is lowered from the variable 
pressure of the storage pressure system to a constant pressure of 1.5 bar. 

The battery model of the buildings library [38] is used with a ca
pacity of Cbat = 600 kWh and a maximal electricity charging and dis
charging power of pbat,max,el = 100 kW. The battery charging and 
discharging efficiency is 90 %, and no self-discharge or aging effects are 
considered. Additional components, such as the pressure storage tank 
and the compressor, are modeled using typical approaches from litera
ture, such as the ideal gas law and the specific work for isentropic 
compression [39]. Thus, a change in the storage pressure prps is calcu
lated by: 

Δprps =
(nH2,comp − nH2,fc)⋅R⋅Tps

Vps Δt (1)  

where R is the universal gas constant, Tps = 293.15 K is temperature, Vps 

= 30.238 m3 is the volume of the pressure storag tank, and Δt is the time 
step width. The minimal storage pressure prps,min is 5 bar, and the 
maximal storage pressure prps,max is 50 bar. If the maximal pressure of 50 
bar within the pressure storage is exceeded, a valve vents the excess 
hydrogen from the pressure storage. 

In literature, the compressor is modeled using one of two assump
tions for the operational behavior. The compressor is modeled by using 
the specific work polytropic compression [40], or the specific work for 
isentropic compression [41]. In this work, the work for isentropic 
compression [42] is considered as an assumption to approximate the 
electricity consumption of the compressor pcomp 

pcomp =
nH2,comp

ηcomp ⋅
κ

κ − 1
RT in⋅

[(
prcomp,out

prcomp,in

)κ− 1
κ

− 1

]

(2)  

where κ is the heat capacity ratio, prcomp,out pressure at the outlet, prcomp,in 

is the pressure at the inlet, ncomp is the hydrogen input, Tin is the initial 
gas temperature, and ηcomp is the compressor efficiency. A compressor 
efficiency of ηcomp = 82.5% is utilized as done by Scheepers et al. [41]. 
Thus, the electricity consumption of the compressor is approximated by 
the specific isentropic work for compression and the assumption of a 

Fig. 1. Sketch of the energy system.  
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constant compressor efficiency. The hydrogen input into the compressor 
is equal to the hydrogen output of the electroylzer 

ncomp = nH2,ey (3) 

The electrical power produced by the PV park and the electricity 
demand are precalculated and set as parameters in the simulation sys
tem to enable perfect foresight for the optimization problem. The elec
tricity demand is derived from the combined electricity consumption of 
multiple office buildings of the research center in Jülich, with a maximal 
electrical consumption of 300 kW. The average electricity consumption 
is 160 kW, while the base load is around 130 kW. The data for the PV 
park is calculated using the open-source Python package pvlib [43] and 
the global horizontal irradiation, the global diffuse irradiation, the wind 
speed, and the air temperature measured by the weather station in 
Aachen Orsbach from the year 2020 as provided by the dwd [44]. The 
resulting PV power and the electricity demand considered in this work 
are shown in Fig. 3. 

Table 1 shows an overview of the component sizes based on the 
component sizes of the hydrogen storage system of the Living Lap En
ergy Campus project [45]. 

2.2. Model generation 

The simulation models are utilized to generate the MILP optimiza
tion models of the fuel cell, the electrolyzer, and the compressor, using 
the modeling toolbox LinMOG described in [46]. The univariate models 
of the electrolyzer and the fuel cell are derived using the Python toolbox 
pwlf [47] while the model of the compressor is derived using an 
implementation of the hinging hyperplane tree algorithm that is 
described by Kämper et al. [48]. The procedure for the model generation 
is described in more detail in [46]. For the sake of readability, the 
general procedure is shortly explained for the compressor and visualized 
in Fig. 4. 

First, an ideal hydrogen source, sink, and an ideal electrical source 

are connected to the simulation model of the compressor. Next, the 
pressure of the hydrogen source is set to 2 bar while the pressure of the 
sink, and the hydrogen flow, are not fixed. By varying the energy 
equivalent hydrogen flow rate wcomp,H2 ,in based on the LHV and the 
pressure prcomp,out at the outlet of the compressor, the electricity con
sumption pcomp at different operating points of the compressor is simu
lated. The electricity consumption calculated with this procedure and 
the operating conditions wcomp,H2 ,in and prcomp,out are then utilized as input 
for the modeling toolbox to derive a model of the operational behavior. 
The piecewise linear model is then parsed to different MILP formulations 
as described by Vielma et al. [49]. 

The resulting models of the operational behavior for the fuel cell 
with five linear elements and the electrolyzer with four linear elements 
are shown in Fig. 5. The model of the fuel cell relates the hydrogen input 
wfc,H2 based on the LHV with the electricity output pfc, while the model 
of the electrolyzer relates the power input of the electrolyzer pey with the 
hydrogen output wey,H2,out based on the LHV. The resulting piecewise 
linear model of the compressor with four linear elements is shown in 
Fig. 6. A detailed investigation of the model accuracy, including an 
analysis of the predictive capabilities of the piecewise linear models, is 
done in [46]. Five linear elements were chosen for the fuel cell to reduce 
the average modeling error such that the average modeling error is 

Fig. 2. Visualization of operational behavior of the electrolyzer and the fuel cell. (a) visualizes the hydrogen output of the electrolyzer as a function of the electricity 
input. (b) visualizes the hydrogen consumption of the fuel cell as a function of the electricity output. 

Fig. 3. Visualization of the considered electricity demand and PV power.  

Table 1 
Component sizes of the energy system.  

Component Name Parameter Value 

PV park pPV,peak 1600 (kW) 
Electrolyzer pey,max,el 400 (kW) 

Fuel Cell pfc,max,el 100 (kW) 
Battery pbat,max,el 100 (kW) 

Cbat 600 (kWh) 
Pressure Tank prps,max 50 (bar) 

Vps 30.238 (m3)  
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similar between all components at around 0.239 kW or less. 

2.3. Optimization model 

The optimization model of the whole energy system is derived using 
the object-oriented open-source framework COMANDO [50]. The elec
trical power of the PV park at each time step t, pPV

t as well the electricity 
demand ped

t are parameters in the optimization problem that are set 
using the forecasted data for each time step. 

The operational behavior of the electrolyzer and the fuel cell are 
determined by piecewise linear models shown in the previous section. A 
binary variable bop

t is added to the piecewise linear models to enable a 
full shutdown of the fuel cell and the electrolyzer. Thus, an additional 
point at 0 is added to the piecewise linear model. 

The change in the state of charge of the pressure storages is modeled 
using the storage capacity Cps, and the ingoing and outgoing energy 
flows wH2 ,in

t and wH2 ,out
t 

Δsocps
t =

(wps,H2 ,in
t − wps,H2 ,out

t )⋅Δt
Cps , (4)  

where Δt is the time step width of time step t. The index t is omitted as 
the time step width is equal for all time steps in this investigation. The 
capacity is calculated using the ideal gas law with the storage volume Vps 

= 30.238 m3, the storage temperature Tps = 293.15 K, the universal gas 
constant R, the minimal storage pressure prps,min = 5 bar, maximal 
storage pressure prps,max = 50 bar, and the lower heating value of 
hydrogen LHV = 241.818 kJ/mol 

Cps =
Vps⋅LHV

Tps⋅R
⋅
(
prps,max − prps,min) = 3749.95kWh. (5) 

The state of charge in time step t, socps
t is calculated using Δsocps

t , and 
the previous state of charge socps

t− 1 

socps
t = socps

t− 1 +Δsocps
t . (6) 

The pressure within the pressure storage tank prps
t is calculated using 

the state of charge and the minimal and maximal storage pressures 

prps
t = socps

t ⋅
(
prps,max − prps,min)+ prps,min. (7) 

The modeling of the BSS is done similarly. A change in the state of 
charge is calculated by 

Δsocbat
t =

(
pbat,ch

t ⋅ηbat,ch − pbat,dis
t

/
ηbat,dis

)
⋅Δt

Cbat , (8)  

where ηbat,ch and ηbat,dis are the charging and discharging efficiencies.The 
state of charge in timestep t socbat

t is then calculated by 

socbat
t = socbat

t− 1 +Δsocbat
t (9) 

Two additional constraints are added to ensure that the battery is 
only charging or discharging at the same time 

pbat,ch
t ⩽bop,bat

t ⋅pbat,max,el, (10) 

Fig. 4. Visualization of the model generation procedure. Figure based on [46].  

Fig. 5. Visualization of the piecewise linear model of the operational behavior of the electrolyzer and the fuel cell. The electrolyzer model visualized in (a) relates the 
power input pey with the hydrogen output wey,H2,out based on the LHV. The fuel cell model shown in (b) relates the hydrogen input wfc,H2 based on the LHV with the 
electricity output pfc. The blue dots represent the breakpoints of the piecewise linear functions. 

Fig. 6. Visualization of the piecewise linear model of the compressor. prcomp,out 

is the output pressure of the compressor, wcomp,H2 ,in is the energy equivalent 
hydrogen flow rate based on the LHV, and pcomp is the electricity consumption 
of the compressor. 
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pbat,dis
t ⩽

(
1 − bop,bat

t

)
⋅pbat,max,el. (11) 

For the modeling of the compressor, the operational behavior is first 
derived as described in the previous section. The output pressure of the 
compressor prout,comp

t needs to be equal to the storage pressure prps
t if the 

compressor is operated. Otherwise, the output pressure must be zero in 
order to utilize the piecewise linear model. This is achieved by intro
ducing a binary variable bop,comp

t and the following equations 

prcomp,out
t ⩽prps,max⋅bop,comp

t (12)  

prcomp,out
t + prps,max⋅(1 − bop,comp

t )⩾prps (13)  

prcomp,out
t ⩽prps

t (14) 

The ingoing hydrogen flow wcomp,H2 ,in
t is equal to the outgoing 

hydrogen flow from the electrolyzer, and since it is assumed that no 
losses occur within the compressor, the outgoing hydrogen flow 
wcomp,H2 ,out

t , is also the same as the ingoing hydrogen flow. 

wps,H2 ,in
t = wey,H2 ,out

t = wcomp,H2 ,in
t = wcomp,H2 ,out

t (15) 

Similarly, the outgoing hydrogen flows of the pressure storage tank 
are equal to the ingoing hydrogen flows of the fuel cell: 

wps,H2 ,out
t = wfc,H2

t (16) 

Finally, the electrical energy drawn from the grid pgrid,buy
t as well as 

the electrical energy feed into the grid pgrid,in
t are calculated using the 

electrical energy from the PV park pPV
t , the electricity demand ped

t , the 
charging and discharging power of the battery pbat,ch

t , pbat,dis
t as well as the 

electricity demand of the electrolyzer pey
t , the electrical energy produced 

by the fuel cell pfc
t and the electricity demand by the compressor pcomp

t 

0 = pgrid,buy
t − pgrid,in

t + pPV
t − ped

t + pbat,dis
t − pbat,ch

t − pey
t + pfc

t − pcomp
t . (17) 

To ensure that no energy is drawn from the grid and fed into the grid 
at the same time, a binary variable bop,grid and the following two equa
tions are added 

pgrid,buy
t ⩽bop,grid

t ⋅wgrid,max,el, (18)  

pgrid,in
t ⩽(1 − bop,grid

t )⋅wgrid,max,el, (19)  

where wgrid,max,el is the maximal electricity that can be drawn or fed into 
the grid, this factor is set to wgrid,max,el = 20000 kW since no limitations 
are considered for the grid. 

Furthermore, the following equations are added to set the current 
system state of the simulation model as the starting point of the opti
mization problem: 

socps
1 = socps

tsim +Δsocps
1 , (20)  

socbat
1 = socbat

tsim +Δsocbat
1 , (21)  

where socps
tsim and socbat

tsim are the states of charge of the pressure storage 
tank and the battery of the simulation in time step tsim. The interaction 
between the optimization and the simulation is described in more detail 
in Section 2.4. 

As an objective, the electricity drawn from the grid is selected 

Obj =
∑T

t=1
pgrid,out

t ⋅Δt (22)  

where T is the last timestep within the prediction horizon. Thus, the 
electricity drawn from the grid is minimized while the electricity fed 
into the grid is not considered. This objective is chosen to increase the 
share of renewable energies utilized to satisfy the electricity demand. 

An additional minimal operational and shutdown time for the 

operation of the fuel cell and the electrolyzer is considered in Section 
4.5. A minimal operational and shutdown time within the optimization 
model is achieved by adding a binary variable for a start-up stc and the 
shutdown sdc to the model of component c. The constraints 

stc
t ⩾bop,c

t − bop,c
t− 1 , (23)  

stc
1⩾bop,c

t − bop,c
tsim , (24)  

sdc
t ⩾bop,c

t− 1 − bop,c
t , (25)  

sdc
1⩾bop,c

tsim − bop,c
1 , (26)  

ensure that stc
t in time step t is one if the component is switched on and 

sdc
t is one if component c is shut off. In Eqs. 24 and 26 bop,c

tsim is the current 
operational state of the component in timestep tsim of the simulation. 
Since no start-up or shutdown costs are considered, sdc

t and stc
t do not 

need to be set to 0 if no state change occurs. 
The minimal operational and shutdown tsd,op time is then enforced by 

the constraints 

nop = nsd = tsd,op/Δt (27)  

stc
t ⋅nop⩽

∑t+nop

i=t
bop,c

i (28)  

(1 − sdc
t )⋅n

sd⩾
∑t+nsd

i=t
bop,c

i (29)  

where nop,st is the number of time steps in the operational state or shut- 
off state. Thus, the optimization ensures that the system state can only be 
changed if the minimal time tsd,op has passed. 

2.4. Model predictive control framework 

In the following, the framework utilized to couple the optimization 
model described in Section 2.3 with the simulation model described in 
Section 2.1 is explained. The simulation model is written in Modelica 
and translated into a functional mock-up unit (FMU). Using the Python 
package FMPy [51] the system behavior of the hybrid energy system can 
be simulated within a Python environment. Therefore, the whole 
framework can be run in a Python environment. Fig. 7 shows a visual
ization of the MPC-framework. 

The MPC framework keeps track of the current time step tsim and 
derives time stamps for each data point of the optimization results ac
cording to the current time and the time step width. Thus, the optimi
zation results can be stored temporarily as time-stamped data. For any 
point within the prediction horizon tpred, the operational strategy, as 
calculated by the optimization, can be retrieved. This enables the 
simulation to run completely independent of the optimization in a much 
finer temporal resolution. Furthermore, storing the optimization results 
as time-stamped data allows an easy adaptation of the prediction hori
zon tpred and the control horizon tcont. The weather and demand data is 
also time-stamped data. Thus, data can be supplied to the simulation for 
each point in time, and a perfect forecast according to the prediction 
horizon can be supplied for the optimization. The simulation results are 
also stored as time-stamped data such that the MPC framework can 
supply the current system states socbat

tsim , socps
tsim , bop,fc

tsim , and bop,ey
tsim to the 

optimization for each next step of the receding horizon optimization. 
Fig. 8 shows a sketch of the concept. 

3. Case study 

The electricity consumption of an energy system controlled by the 
MPC framework is compared to the electricity consumption of an energy 
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system controlled by a rule-based controller to evaluate the benefits of 
MPC. The rule-based controller is described in Section 3.1. Furthermore, 
clustering is used to decrease the number of optimizations carried out for 
the case study while still considering the operation of the hybrid energy 
system throughout the year. The clustering of the year into typical weeks 
is described in subSection 3.2. 

For the derivation of the impact of different parameters on the results 

of the MPC framework, an investigation on the impact of a varying 
prediction horizon length, a varying control horizon length, a varying 
electricity demand, a varying PV power, and the consideration of a 
variable grid price for multi-objective optimizations is conducted. 

Fig. 7. Visualization of the MPC-framework.  

Fig. 8. Visualization of the concept of the MPC-framework.  

Fig. 9. Flow chart of the rule-based controller considered in this work.  
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3.1. Rule-based controller 

The rule-based controller operates on a set of rules to minimize the 
energy consumption of the hybrid energy system. If the energy from the 
PV park pPV

t is larger than the electricity demand ped
t , 

Δpel
t = ppv

t − ped
t ⩾0 (30)  

the battery starts charging. If the surplus energy is larger than the energy 
that the battery can utilize, 

Δpel,bat
t = Δpel

t − pbat,ch
t + pbat,dis

t ⩾0 (31)  

for instance, if the battery is full, the electrolyzer starts operating. If pPV 

is smaller than ped the battery starts unloading. If more energy is needed 
than the battery can supply, the fuel cell is turned on to provide the rest 
of the energy needed. Thus, the battery is always utilized first since its 
efficiency is higher than the different efficiencies of the hydrogen 
components. A flowchart of the general principle of the rule-based 
controller is shown in Fig. 9. 

The minimal operational time is enforced by a rule such that the 
electrolyzer and fuel cell can not change their state for the defined 
period of time after a previous state change. Therefore, one additional 
variable is introduced that keeps track of the time of the last state 
change. In this work, a minimal operational time of 2 h is assumed, 
similar to the work of Fan et al. [52]. 

3.2. Clustering 

The MPC and the rule-based controller are compared for five typical 
weeks of the year 2020. The typical weeks and the number of times the 
week appears within one year are derived with the open-source clus
tering toolbox tsam [53]. Similar to the work of Kotzur [54], k-medoids 
clustering is used to derive the typical periods. The electricity price 
added in Section 4.6 is weighted with a factor of 0 in the clustering to 
increase the accuracy of the typical periods for the investigations carried 
out in Sections 4.1–4.5. Then, for the investigation done in Section 4.6, 
the same typical periods are utilized to achieve comparability between 
the results. 

The electricity consumption over one year is calculated by multi
plying the electricity consumption of one typical period by its number of 
appearances throughout the year. Fig. 10 visualizes the separation of the 
year into 5 clusters of one week each. 

4. Results 

This section compares the results of the case study. Therefore, the 
influence of different settings on the resulting operational strategies is 
investigated. A comparison between different prediction horizon lengths 
on the optimization results is made in subSection 4.1. SubSection 4.2 
compares optimized and rule-based operations. In 4.3, a sensitivity 
analysis with regard to the electricity demand and installed photovoltaic 
capacity is shown. The impact of an increased battery charging and 
discharging rate is discussed in Section 4.4. Furthermore, Section 4.5 
discusses the impact of a minimal operational time for the hydrogen 

components. Finally, in Section 4.6, the impact of a varying grid price in 
combination with multi-objective optimizations is discussed utilizing 
Pareto fronts. All optimizations are carried out using Gurobi [55] with a 
relative mixed integer programming (MIP) gap of 0.1% and an absolute 
MIP gap of 0.5 of the objective value on an Intel i5-8265U CPU with 23 
GB of RAM. 

4.1. Influence of the prediction horizon length 

The following subsection investigates the influence of the prediction 
horizon of the optimization problem. An optimization problem’s pre
diction horizon is an essential parameter since a long-term operational 
strategy can only be derived if the horizon is chosen sufficiently long. 
However, a long prediction horizon leads to many time steps and, 
therefore, an increased optimization problem size. This section chooses 
a control horizon of 24 h for a quick run time of the MPC framework. The 
impact of a shorter control horizon is shown in Section 4.6. 

First, the operational behavior of the energy system with respect to 
the prediction horizon of the optimization problem is evaluated. The 
results of the first optimization of the second typical period are shown in 
Fig. 11 (a) and (b) for a two-day, a four-day, and a seven-day prediction 
horizon. As shown, for increasing prediction horizons, different opera
tional strategies are derived from the optimization problem. However, 
since an optimization problem is solved every 24 h, only the first day of 
the prediction horizon is used to derive setpoints for the simulation 
system. 

Fig. 12 shows the simulation results of the state of charge of the 
battery and the pressure storage tank for the whole second typical 
period. As expected, the simulation results of the first day are almost 
identical to the optimization results shown in Fig. 11, as the control 
horizon is set to one day. Thus, the results from the first optimization are 
utilized to control the energy system during the first day by sending 
setpoints to the fuel cell, electrolyzer, and battery, as explained in Sec
tion 2.4. The simulations of the subsequent days show that different 
operational points are derived by the optimization in the next step of the 
receding horizon. 

Table 2 shows a comparison between the total grid electricity con
sumption and the run time of each simulation with model predictive 
control. As shown in Table 2, increasing the prediction horizon from two 
to four days leads to a decreased electricity consumption, while 
increasing the prediction horizon to seven days only leads to slightly 
better results. Therefore, it can be concluded that many close optimal 
operating strategies exist, and a four-day prediction horizon is sufficient 
for this specific system to find close optimal operational points. Utilizing 
a two-day prediction horizon yields only slightly worse results and thus 
might be preferable if the run time is limited. However, to utilize the 
potential of the MPC framework, a four-day horizon prediction horizon 
is considered in the following investigations. 

4.2. Comparison with a rule-based controller 

The following section compares exemplary simulation results of the 
energy system for the third typical period controlled by the MPC 
framework with the results of an energy system that is controlled by the 

Fig. 10. Clustering results of the year in typical weeks. Each number shows the typical period representing this week in the original data.  
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rule-based controller. Fig. 13 (a) and (b) show the different operational 
strategies for the electrolyzer and the fell cell, respectively. The elec
trolyzer operation is very similar since an excess of energy is available 
during the day. Therefore, the operating point is determined mainly by 
the battery’s maximal charging capacity and the electrolyzer’s nominal 
power. In comparison, the two operational strategies for the fuel cell are 
very different. While the rule-based approach utilizes the fuel cell at the 
beginning of the night in full load, an operation in part load can be 
observed for the optimized operation. 

A comparison between the resulting state of charge (soc) of the 
battery storage and the hydrogen storage system is shown in Fig. 14 (a) 
and (b), respectively. One notable difference between both storage 
technologies is that the discharging is stretched over a more extended 
period of time for the optimized operation. This shows the model pre
dictive controller’s capability to consider future energy production and 
demand. As a result, less energy is drawn from the electricity grid, as 
shown in Fig. 15. 

Fig. 16, and 17 show the results for the first typical period. A 
different operational strategy needs to be derived to reduce the utilized 
grid energy. The energy stored in the battery and the hydrogen storage 
are utilized in combination to save some battery capacity until the end of 
the night. The fuel cell setpoint needs to be precisely adapted for this 
operational strategy. Therefore, a forecast of electricity demand and 
solar energy is needed. Table 3 shows the grid electricity consumption 
for each typical period. As shown, during the first typical period, which 
represents most of the summer, the MPC is able to reduce the electricity 
consumption by 1.232 MWh. The lowest decrease in the grid con
sumption is achieved during the second typical period with only 0.15 
MWh. This is due to a low utilization of the hydrogen storage system. 
During the second typical period, only 1.62 MWh of electrical energy is 
converted to hydrogen, while during the fourth typical period, 3.50 kWh 
are converted to hydrogen even though less PV energy is available. This 
difference in the usage of the hydrogen storage system is due to the 
specific weather and demand conditions of the second and fourth typical 
periods. The PV power in comparison to the electricity demand is shown 
in Fig. 18. In the fourth typical period, much excess energy is available 
during the fourth and fifth days that can be converted to hydrogen for 
later usage, while the excess energy in the second typical period is 
mainly stored in the battery. 

The total electricity consumption over a whole year is calculated by 
using the number of times one typical period appears in one year. In this 
case study, the rule-based approach leads to an electricity consumption 
of 436.11 MWh, while the optimized operation leads to 392.88 MWh of 

Fig. 11. Comparison between optimization results utilizing a 2-day, 4-day, and 7-day prediction horizon. (a) visualizes the calculated state of charge of the battery, 
and (b) visualizes the calculated state of charge of the pressure storage. 

Fig. 12. Comparison between simulation results of the energy system controlled by the MPC framework utilizing a 2-day, 4-day, and 7-day prediction horizon. (a) 
visualizes the simulated state of charge of the battery, and (b) visualizes the simulated state of charge of the pressure storage. 

Table 2 
Comparison between the simulated energy drawn from the grid and the runtime 
by utilizing the MPC framework with 2-day, 4-day, and 7-day prediction 
horizons.  

Ndays 2-Days 4-Days 7-Days 

Electricity Consumption (MWh) 393.92 392.88 392.57 
MPC framework run time (min) 6 17 24  
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energy bought from the grid. Thus, a total reduction of 11% of the total 
utilized grid energy was achieved using model predictive control. 

4.3. Sensitivity analysis 

In this section, a sensitivity study is carried out to validate whether 
model predictive control consistently leads to energy savings compared 
to a rule-based approach. Therefore, the approach is selected to increase 
and decrease the energy demand and the available solar energy. In this 
work, the available solar energy and the energy demand are modified to 
be at 80% or 120% of the base scenario and run model predictive control 
and rule-based approach for all resulting scenarios and for the same 

typical periods as derived in Section 3.2. Similar to Section 4.2, the 
resulting electricity consumption for the whole year is calculated. 
Furthermore, the relative difference Δeyear between the optimized 
operation and the rule-based approach is calculated by: 

Δeyear =
ERBC − EMPC

EMPC (32)  

where ERBC and EMPC are the total grid electricity consumptions of the 
energy system over one year controlled by the MPC and the RBC. The 
results are shown in Table 4. Some scenarios show a lower relative 
difference between the optimized operational behavior and the rule- 
based approach, but at least an improvement of over 3.93% is ach
ieved even in the worst case. This shows that the model predictive 
controller can increase the system efficiency even in scenarios with 
scarce and excessive amounts of PV power compared to the electricity 
demand. 

A detailed comparison between the reduction in electricity drawn 
from the grid ΔEcont: 

ΔEcont =
∑N tp

i=1
pgrid,out,RBC,tp

i ⋅Δt −
∑Ntp

i=1
pgrid,out,MPC,tp

i ⋅Δt (33)  

is shown in Table 5. In Eq. 33 pgrid,out,RBC,tp
i is the electricity drawn from 

the grid by the energy system controlled by the RBC, and pgrid,out,MPC,tp
i is 

the electricity drawn from the grid by the energy system controlled by 
the MPC during the i-th typical period tp. Furthermore, Ntp is the number 

Fig. 13. Comparison between the operational behavior of the electrolyzer and the fuel cell utilizing the MPC framework and the rule-based controller. (a) visualizes 
the results for the electrolyzer, and (b) visualizes the operation of the fuel cell. 

Fig. 14. Comparison between the operational behavior of the storage technologies of the energy system utilizing the MPC framework and the rule-based controller. 
(a) visualizes the soc of the battery, and (b) visualizes the soc of the pressure storage. 

Fig. 15. Comparison between energy drawn from the grid utilizing the MPC 
framework and the rule-based controller. 
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of time steps within the typical period, and Δt is the simulation time step 
width of 1 min. 

As shown in Table 5, the MPC is able to always decrease the elec
tricity drawn from the grid. The most significant differences between 
runs with different sensitivity factors are notable in the first typical 
period. The RBC is able to derive good strategies during the first typical 
period if the electricity demand is low, as it becomes less critical to 
utilize the energy storage system efficiently. On the contrary, in the third 
typical period, the difference between the MPC and the RBC does not 
directly correlate with the electricity demand factor but with the PV 
factor. This is most likely due to a higher utilization of the storage sys
tems. As shown in Figs. 13–15 during the third typical period, both 
storage technologies are utilized during the third typical period. How
ever, neither storage is fully charged as not enough renewable energy is 

Fig. 16. Comparison between the operational behavior of the battery and the fuel cell utilizing the MPC framework and the rule-based controller. (a) visualizes the 
soc of the battery, and (b) visualizes the operation of the fuel cell. 

Fig. 17. Comparison between energy consumption of the energy system uti
lizing the MPC framework and the rule-based controller. 

Table 3 
Electricity demand, PV energy, and grid electricity consumptions of the energy 
system controlled by the MPC framework and the RBC for the different typical 
periods as derived in Section 3.2.  

Typical period 1 2 3 4 5 

Electricit Demand (MWh) 25.28 27.09 29.63 29.73 25.82 
PV Energy (MWh) 56.22 12.87 21.42 10.77 17.35 

Electricity Consumption RBC 
(MWh) 

1.41 15.84 15.49 21.98 13.54 

Electricity Consumption MPC 
(MWh) 

0.178 15.69 14.69 21.63 13.12  

Fig. 18. Visualization of the electricity demand and the PV power during the second and fourth typical period.  

Table 4 
Results of the sensitivity analysis.  

sensitivity factors grid electricity 

PV 
factor 

demand 
factor 

rule-based 
(MWh) 

optimization 
(MWh) 

rel. difference 
(%) 

0.8 0.8 316.77 301.88 4.93 
0.8 1 471.08 441.15 6.78 
0,8 1.2 663.53 638.40 3.93 
1 0.8 289.00 272.89 5.90 
1 1 436.11 392.88 11.00 
1 1.2 601.43 575.50 4.51 

1.2 0.8 268.65 251.11 6.98 
1.2 1 411.62 367.08 12.14 
1.2 1.2 566.36 535.50 5.76  
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available. Furthermore, the results show that the improvements to be 
gained from the model predictive controller depend on the specific 
typical period. 

4.4. Increased battery charging rate 

The charging and discharging rate of the battery storage system was 
chosen low at 100 kW to reduce stress on the battery from fast charging. 
However, to investigate the effect of a higher charging and discharging 
rate, the sensitivity analysis is run with pbat,max,el = 600 kW. The results 
are shown in Table 6. 

As shown by increasing the charging and discharging rate, the energy 
systems controlled by the MPC need considerably less grid energy to 
fulfill the electricity demand. The performance of the rule-based 
controller even worsens in some cases. This can be explained by faster 
discharging of the battery such that the fuel cell operates more hours at 
full load, decreasing the system efficiency. 

In summary, the optimization performs even better with an increased 
charging and discharging rate compared to a rule-based controller. 
However, an increased charging and discharging rate can also lead to 
faster battery degradation. Therefore, the charging rate of pbat,max,el =

100 kW is utilized for the following investigations. 

4.5. Minimal operational time 

A typical constraint to avoid rapid start-ups and shutdowns of the 
hydrogen components under real-world conditions is incorporating time 
coupling constraints. This case study assumes a minimal operational and 
shutdown time of 2 h, similar to Fan et al. [52]. 

Using a minimal operational time of 2 h leads to a steep decrease in 
the number of start-ups and shutdowns of the hydrogen components. 
The number of start-ups and shutdowns of the electrolyzer over one year 
decreased by 42.09 % from 506 to 293 by utilizing a minimal opera
tional time. The number of start-ups and shutdowns of the fuel cell 
decreased by 24 % to 879 start-ups and shutdowns, showing that the 

approach of a minimal operational and shutdown time works to reduce 
the number of state changes. 

The same sensitivity analysis is conducted as in the previous section 
to investigate the impact of a minimal operational time on the electricity 
drawn from the grid. The results are shown in Table 7. The electricity 
consumption increases for both controllers. However, it is noticeable 
that the relative difference between the rule-based controller and the 
model predictive controller increases across all cases. Thus, it can be 
concluded that MPC can handle additional constraints, such as a mini
mal operational time, more effectively than the rule-based controller. 

4.6. Pareto analysis 

Under real circumstances, optimizing the electricity price while 
reducing the electricity consumption might be preferable if electricity is 
bought at a variable grid price. Therefore, multiobjective optimization 
can be used to find Pareto-optimal solutions for scheduling the hybrid 
battery-hydrogen energy system. Thus, a factor ∊ and an additional term 
for a variable grid price are utilized in the objective function 

Objnew =
∑T

t=1
pgrid,buy

t ⋅
(

∊ + (1 − ∊)⋅cgrid
t

)
⋅Δtt (34)  

where cgrid
t is a variable grid price. Thus, if ∊ = 1, an optimization of the 

consumed grid electricity is carried out, and ∊ = 0 results in a fully 
economic optimization. The assumption is selected to exclude the option 
of selling electricity to the grid from the objective function, to reduce the 
number of influencing factors as much as possible, and to concentrate 
purely on the operation of the hybrid energy storage system. The elec
tricity price for the year 2020 from the German electricity market is 
selected as the cost factor cgrid

t . 
The following investigates the impact of different settings of the MPC 

framework to analyze the impacts on the Pareto optimal results and, 
therefore, the theoretical potentials of mathematical optimization for 
the determination of operational strategies for this particular hybrid 
energy system. Fig. 19 shows the impact of the prediction horizon on the 
Pareto optimal solutions. 

The resulting Pareto fronts show that optimizations with a prediction 
horizon of 7 days yield the best results. However, the Pareto fronts of 
runs of the MPC framework with 2-day and especially 4-day horizons 
yield only slightly worse results. On the contrary, a run of the MPC 
framework with a one-day prediction horizon yields much worse results 
but still performs better than the rule-based controller in most cases. The 
poor performance of the MPC framework with a 1-day prediction hori
zon is in part due to the one-day control horizon. However, even with 
these suboptimal settings for the MPC framework, a decrease in both 
cost and electricity consumption was achieved with the correct settings, 
showing the potential capabilities of the approach. All runs considering 
the rule-based controller result in the same operational strategy since it 
follows the same rules stated in Section 3.1 for each run of the 

Table 5 
Reduction of the electricity drawn from the grid ΔEcont in each typical period of 
the sensitivity analysis.  

sensitivity factors ΔEcont (kWh) 

PV factor demand factor tp = 1 tp = 2 tp = 3 tp = 4 tp = 5 

0.8 0.8 193.52 119.46 665.58 356.31 386.46 
0.8 1 810.35 90.24 634.85 282.91 354.15 
0.8 1.2 671.82 92.73 539.65 242.94 319.23 
1 0.8 162.61 209.62 776.76 413.90 472.31 
1 1 1229.72 146.19 798.25 356.91 419.46 
1 1.2 581.59 166.33 761.31 325.22 425.15 

1.2 0.8 155.16 304.33 842.73 464.40 569.37 
1.2 1 1230.04 219.59 864.56 392.68 466.09 
1.2 1.2 704.51 226.73 859.55 385.99 485.02  

Table 6 
Results of the sensitivity analysis with an increased charging and discharging 
rate of the battery.  

sensitivity factors grid electricity 

PV 
factor 

demand 
factor 

rule-based 
(MWh) 

optimization 
(MWh) 

rel. difference 
(%) 

0.8 0.8 303.72 288.93 5.12 
0.8 1 484.16 422.39 14.63 
0.8 1.2 681.11 619.70 9.91 
1 0.8 276.34 251.66 9.81 
1 1 431.38 372.45 15.82 
1 1.2 618.71 555.75 11.33 

1.2 0.8 255.72 227.37 12.47 
1.2 1 403.22 342.06 17.88 
1.2 1.2 572.97 510.83 12.17  

Table 7 
Results of the sensitivity analysis with a minimal operational and shutdown time 
of two hours for the electrolyzer and the fuel cell.  

sensitivity factors grid electricity 

PV 
factor 

demand 
factor 

rule-based 
(MWh) 

optimization 
(MWh) 

rel. difference 
(%) 

0.8 0.8 323.36 303.56 6.52 
0.8 1 474.89 443.28 7.13 
0,8 1.2 666.60 640.80 4.02 
1 0.8 295.99 274.18 7.95 
1 1 440.18 395.12 11.41 
1 1.2 605.62 577.59 4.85 

1.2 0.8 271.73 252.97 7.42 
1.2 1 415.94 369.73 12.50 
1.2 1.2 569.79 537.80 5.95  
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framework. 
To investigate the impact of the control horizon, a reduction of the 

control horizon for different prediction horizon lengths is investigated. 
This investigation is done for a prediction horizon of one day, two days, 
and four days, with a control horizon of 24 h, 12 h, and 6 h. Further
more, in the case of a one-day prediction horizon, a run of the MPC 
framework with a control horizon of 1 h is included. The resulting Pareto 
fronts are shown in Fig. 20 (a)-(c). (a) visualizes the results for a pre
diction horizon of 1 day, (b) and (c) the results with a two-day and four- 
day prediction horizon, respectively. 

As shown in (a), when a very short prediction horizon is considered, 
frequent updates of the operational strategies are needed in order to 
utilize MPC efficiently. In the case of a two-day and a four-day predic
tion horizon, the benefit of more frequent optimization reduces with 
longer prediction horizons, as accurate models of the simulation systems 
are derived in the scope of this work, and perfect foresight is utilized to 
investigate the potential of MPC. However, under real circumstances, 
frequent optimization of the operational strategy will most likely in
crease the performance of MPC due to uncertainties in the optimization 
model and the forecasted data. 

Fig. 19. Visualization of the Pareto front for runs of the MPC framework with different prediction horizons and a control horizon of 24 h.  

Fig. 20. Visualization of the Pareto front for runs of the MPC framework with different prediction horizons and different control horizons. (a) shows the results for a 
prediction horizon of 1 day, (b) shows the results for a prediction horizon of 2 days, and (c) shows the results for a prediction horizon of 4 days. 
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Furthermore, the influence of the price forecast horizon on the re
sults of the MPC framework is investigated. Since a price forecast of 
multiple days is, in most cases, not available, the prediction horizon of 
the price is reduced to 24 h. Moreover, the control horizon is set to 12 h, 
so the operational strategy can be adapted twice daily. For the predic
tion horizon beyond the first 24 h, a constant price of 30.93 €/MWh is 
considered. The MPC framework is run using a prediction horizon of 4 
days and a prediction horizon of 2 days. Runs with the two-day pre
diction horizon are referred to as case one, and the runs with the four- 
day horizon are referred to as case 2. The resulting Pareto fronts are 
shown in Fig. 21 in comparison to the runs of the MPC framework with a 
one-day prediction horizon and a seven-day prediction horizon with full 
perfect foresight, and a one-day control horizon as shown in Fig. 19. 

Both cases show a small dependency on the parameter ∊. This is 
because a constant price is assumed for a large part of the prediction 
horizon. A constant electricity price turns the optimization of the elec
tricity cost into an optimization of the consumed grid electricity. Thus, 
the optimization prioritizes energy efficiency over cost efficiency. As 
expected, an increased prediction horizon leads to increased efficiency. 
However, this effect is relatively small, showing that a one-day predic
tion horizon is insufficient to reduce the operational cost to the full 
extent possible. However, a two-day prediction horizon of the energy 
availability can lead to drastic decreases in energy consumption while 
drastically reducing the operational cost compared to a rule-based 
controller. 

A fully variable grid price might not be desired in some practical 
applications. Therefore, a variable grid price with time-specific static 
electricity prices might be preferred under some circumstances. There
fore, an investigation is carried out using a three-tier time-of-use concept 
as explained by Stute et al. [56] to investigate potential improvements to 
be gained by the developed MPC approach with fixed time-dependent 
electricity prices. In this study, the same three time periods are 
applied as utilized by Stute et al. [56]. In this work, the electricity price 
during each period is the yearly average during that time period. Thus, a 
constant electricity price of cgrid,1 = 31.54 €/MWh is considered for the 
time between 6 a.m. and 4 p.m. Furthermore, during the time between 4 
p.m. and 9 p.m., a constant price of cgrid,2 = 37.74 €/MWh is considered, 
while a price of cgrid,3 = 26.29 €/MWh is considered for the time between 
9 p.m. and 6 a.m. As shown in Fig. 22, the model predictive controller is 
able to reduce the electricity cost considering a three-tier time-of-use 
concept. However, when considering a three-tier time-of-use concept, 
the potential reduction in the operating cost is limited. This is due to the 
low electricity price at night when no PV energy is available, and energy 
is drawn from the grid. The best results are achieved with a 7-day pre
diction horizon. However, increasing the prediction horizon above two 

days yields only slightly better results. This is similar to the results with a 
fully variable grid price. However, a fully variable grid price with a 
seven-day prediction horizon leads to a 20% cost reduction. In com
parison to the more realistic scenario with an accurate price prediction 
of one day, the tree-tier-time of use concept achieved similar results with 
a reduction in the operational cost below 1%. This shows that in the case 
study investigated in this paper, a three-tier time-of-use concept leads to 
comparable results to a fully variable grid price if the price forecast is 
limited to one day. However, this case study also shows that MPC can 
potentially decrease the operational cost drastically if accurate long- 
term forecasts on the electricity price can be obtained. 

5. Conclusion 

This work utilizes a simulation model of a hybrid energy storage 
system to derive tailor-made MILP optimization models of the opera
tional behavior using the open-source toolbox LinMOG. The derived 
MILP optimization models of the operational behavior are combined 
with additional constraints to derive component models in the 
COMANDO framework [50]. The component models are then combined 
into a MILP optimization model of the hybrid energy system. The opti
mization model is used to determine operating strategies for the hybrid 
energy storage system in the context of a model predictive control 
framework. In order to compare different MPC-based operational stra
tegies, a framework is developed that enables a quick way to test many 
different settings for a model predictive controller. In future works, the 
operational behavior of the simulation model could be validated using a 
hadware-in-the-loop platform such as explained in [57]. 

The model predictive controller is compared to a rule-based 
controller to show the potential improvements to be gained by utiliz
ing model predictive control under various external conditions. There
fore, a sensitivity analysis is conducted by varying the PV power and the 
electricity demand. For this study, five typical weeks are derived with k- 
medoids clustering to investigate the average yearly electricity con
sumption emerging from utilizing either controller. It was shown that 
MPC can reduce the electricity drawn from the grid under various 
conditions such that in the cases investigated in this work, an 
improvement of up to 12.14 % compared to the rule-based controller 
was achieved, while even in the worst case, an improvement of 3.93 % 
was achieved. However, it was shown that the PV energy, electricity 
demand, and typical periods greatly impacted the results. Furthermore, 
it was shown that the improvements to be gained depend on the envi
ronmental conditions, such that investigations for various weather 
conditions are necessary to evaluate the performance of a model pre
dictive control approach for this hybrid battery-hydrogen energy storage 

Fig. 21. Visualization of the Pareto front for runs of the MPC framework compared to runs of the MPC framework with a 1-day and a 7-day prediction horizon with a 
24-h control horizon shown in Fig. 19. Case 1 is a run of the MPC framework with a prediction horizon of 2 days with a price forecast of 1 day, and case 2 is a run of 
the MPC framework with a prediction horizon of 4 days with a price for.ecast of 1 day. 
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system. In future works, the impact of the typical periods on the results 
could be investigated in more detail. 

Moreover, the impact of a minimal operational time and varying 
electricity prices on the results of the MPC framework are investigated. 
The consideration of a minimum operational time for the fuel cell and 
the electrolyzer was shown to have only a minor impact on the perfor
mance of the MPC framework while decreasing the overall number of 
start-ups and shut-downs by 29.62 %. An economic optimization 
considering a variable grid price results in a steep decrease of the 
operational cost of up to 47 % for the considered typical weeks in 
comparison to a rule-based controller if the price curves of the next 
seven days are available. In more realistic scenarios with an accurate 
price forecast of just one day, the electricity cost is reduced by 11 %, 
while the use of a three-tier time-of-use concept leads to an 11.3% 
reduction in the electricity cost for the considered typical weeks. Finally, 
the Pareto fronts of multi-objective optimizations considering the grid 
electricity consumption and a variable grid price are investigated. It was 
shown that MPC can be utilized to reduce the electricity cost drastically 
while decreasing the electricity consumption in all cases. Furthermore, 
the impact of the prediction and control horizon on the Pareto optimal 
solution was investigated. The results show that increasing the predic
tion horizon above one day increased the performance of the model 
predictive controller, while increases above a two-day horizon improved 
the performance only slightly. 

In conclusion, this paper presents a framework for validating 
different operational strategies and settings for model predictive control 
algorithms. The potential effectiveness of MPC is investigated utilizing 
perfect foresight and a detailed simulation model. MPC can reduce the 
operational cost while decreasing the electricity consumption for the 
investigated hybrid battery-hydrogen energy storage system under all 
circumstances that were considered in this work. 
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