001024075 001__ 1024075
001024075 005__ 20240516205740.0
001024075 0247_ $$2datacite_doi$$a10.34734/FZJ-2024-01955
001024075 0247_ $$2URN$$aurn:nbn:de:0001-20240516102957373-1285584-9
001024075 020__ $$a978-3-95806-738-7
001024075 037__ $$aFZJ-2024-01955
001024075 1001_ $$0P:(DE-Juel1)171572$$aGutzen, Robin$$b0$$eCorresponding author
001024075 245__ $$aAnalysis and quantitative comparison of neural network dynamics on a neuron-wise and population level$$f- 2023-10-19
001024075 260__ $$aJülich$$bForschungszentrum Jülich GmbH Zentralbibliothek, Verlag$$c2024
001024075 300__ $$axii, 252
001024075 3367_ $$2DataCite$$aOutput Types/Dissertation
001024075 3367_ $$0PUB:(DE-HGF)3$$2PUB:(DE-HGF)$$aBook$$mbook
001024075 3367_ $$2ORCID$$aDISSERTATION
001024075 3367_ $$2BibTeX$$aPHDTHESIS
001024075 3367_ $$02$$2EndNote$$aThesis
001024075 3367_ $$0PUB:(DE-HGF)11$$2PUB:(DE-HGF)$$aDissertation / PhD Thesis$$bphd$$mphd$$s1710496006_25022
001024075 3367_ $$2DRIVER$$adoctoralThesis
001024075 4900_ $$aSchriften des Forschungszentrums Jülich Reihe Information / Information$$v102
001024075 502__ $$aDissertation, RWTH Aachen University, 2023$$bDissertation$$cRWTH Aachen University$$d2023
001024075 520__ $$aOur goal is to better understand the working mechanisms of biologicalneural systems. To this end, describing neural systems as networksprovides a powerful and widely-used analysis approach. The networksyntax of interacting nodes exhibiting joint dynamics facilitates thequantitative characterizations of neural systems across scales. More-over, this approach enables us to construct systematic comparisons ofneural network descriptions across domains.We aim to identify characterizations of neural network activity thatreflect the underlying connectivity and relate to the network’s abil-ity to process information. In this context, we explore characteristicmeasures from experimental and simulated data sources. Concretely,we look at cortical activity data from mice and monkeys, from dif-ferent recording techniques like implanted electrode arrays, laminarprobes, ECoG, and calcium imaging, and further from simulationsof stochastic processes, spiking, and mean-field network models. Weinvestigate activity measures of different complexity, including mea-sures on the level of individual neurons, higher-order measures ofcoordinated spiking activity, and population-level field potential mea-sures describing spatial wave patterns. Such activity characterizationsalways represent an abstraction, and the right level of detail dependson the data type and the question of interest. For a given context, theappropriate abstraction level allows us to integrate and compare dataand models from heterogeneous sources.Evaluating the similarity between such different network descrip-tions is a common demand in computational neuroscience. Extendingthe concept of validation, we formalize and apply cross-domain com-parisons in model vs. experiment, model vs. model, and experiment vs.experiment scenarios. In this framework, we further evaluate and ex-tend existing statistical testing approaches and look at reproducibility,sources of variability, and technical limitations.Through our exploration of network activity characterizations andtheir comparability, we evaluate the relationship between networkconnectivity, activity, and function. Concretely, over the course offive research projects, we implement and demonstrate systematic ap-proaches to validate model simulators, statistically evaluate networkorganization, infer network connectivity from activity data, combinedata sources of wave activity, and relate wave activity to external in-fluences and behavior. With a focus on open and collaborative sciencepractices, we implement our methodologies as reusable open-sourcetools while building upon existing open-source tools and standards.
001024075 536__ $$0G:(DE-HGF)POF4-5235$$a5235 - Digitization of Neuroscience and User-Community Building (POF4-523)$$cPOF4-523$$fPOF IV$$x0
001024075 536__ $$0G:(DE-HGF)POF4-5232$$a5232 - Computational Principles (POF4-523)$$cPOF4-523$$fPOF IV$$x1
001024075 536__ $$0G:(EU-Grant)945539$$aHBP SGA3 - Human Brain Project Specific Grant Agreement 3 (945539)$$c945539$$fH2020-SGA-FETFLAG-HBP-2019$$x2
001024075 8564_ $$uhttps://juser.fz-juelich.de/record/1024075/files/Information_102.pdf$$yOpenAccess
001024075 8564_ $$uhttps://juser.fz-juelich.de/record/1024075/files/Information_102.gif?subformat=icon$$xicon$$yOpenAccess
001024075 8564_ $$uhttps://juser.fz-juelich.de/record/1024075/files/Information_102.jpg?subformat=icon-1440$$xicon-1440$$yOpenAccess
001024075 8564_ $$uhttps://juser.fz-juelich.de/record/1024075/files/Information_102.jpg?subformat=icon-180$$xicon-180$$yOpenAccess
001024075 8564_ $$uhttps://juser.fz-juelich.de/record/1024075/files/Information_102.jpg?subformat=icon-640$$xicon-640$$yOpenAccess
001024075 909CO $$ooai:juser.fz-juelich.de:1024075$$pec_fundedresources$$pVDB$$pdriver$$purn$$popen_access$$popenaire$$pdnbdelivery
001024075 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
001024075 915__ $$0LIC:(DE-HGF)CCBY4$$2HGFVOC$$aCreative Commons Attribution CC BY 4.0
001024075 9141_ $$y2024
001024075 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)171572$$aForschungszentrum Jülich$$b0$$kFZJ
001024075 9131_ $$0G:(DE-HGF)POF4-523$$1G:(DE-HGF)POF4-520$$2G:(DE-HGF)POF4-500$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-5235$$aDE-HGF$$bKey Technologies$$lNatural, Artificial and Cognitive Information Processing$$vNeuromorphic Computing and Network Dynamics$$x0
001024075 9131_ $$0G:(DE-HGF)POF4-523$$1G:(DE-HGF)POF4-520$$2G:(DE-HGF)POF4-500$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-5232$$aDE-HGF$$bKey Technologies$$lNatural, Artificial and Cognitive Information Processing$$vNeuromorphic Computing and Network Dynamics$$x1
001024075 920__ $$lyes
001024075 9201_ $$0I:(DE-Juel1)IAS-6-20130828$$kIAS-6$$lComputational and Systems Neuroscience$$x0
001024075 9201_ $$0I:(DE-Juel1)INM-10-20170113$$kINM-10$$lJara-Institut Brain structure-function relationships$$x1
001024075 9201_ $$0I:(DE-Juel1)INM-6-20090406$$kINM-6$$lComputational and Systems Neuroscience$$x2
001024075 980__ $$aphd
001024075 980__ $$aVDB
001024075 980__ $$aUNRESTRICTED
001024075 980__ $$abook
001024075 980__ $$aI:(DE-Juel1)IAS-6-20130828
001024075 980__ $$aI:(DE-Juel1)INM-10-20170113
001024075 980__ $$aI:(DE-Juel1)INM-6-20090406
001024075 9801_ $$aFullTexts