001024078 001__ 1024078
001024078 005__ 20250203103104.0
001024078 0247_ $$2doi$$a10.48550/ARXIV.2311.09672
001024078 0247_ $$2datacite_doi$$a10.34734/FZJ-2024-01958
001024078 037__ $$aFZJ-2024-01958
001024078 1001_ $$0P:(DE-Juel1)180365$$aKöhler, Cristiano André$$b0$$eCorresponding author$$ufzj
001024078 245__ $$aFacilitating the sharing of electrophysiology data analysis results through in-depth provenance capture
001024078 260__ $$barXiv$$c2023
001024078 3367_ $$0PUB:(DE-HGF)25$$2PUB:(DE-HGF)$$aPreprint$$bpreprint$$mpreprint$$s1712647400_29217
001024078 3367_ $$2ORCID$$aWORKING_PAPER
001024078 3367_ $$028$$2EndNote$$aElectronic Article
001024078 3367_ $$2DRIVER$$apreprint
001024078 3367_ $$2BibTeX$$aARTICLE
001024078 3367_ $$2DataCite$$aOutput Types/Working Paper
001024078 520__ $$aScientific research demands reproducibility and transparency, particularly in data-intensive fields like electrophysiology. Electrophysiology data is typically analyzed using scripts that generate output files, including figures. Handling these results poses several challenges due to the complexity and interactivity of the analysis process. These stem from the difficulty to discern the analysis steps, parameters, and data flow from the results, making knowledge transfer and findability challenging in collaborative settings. Provenance information tracks data lineage and processes applied to it, and provenance capture during the execution of an analysis script can address those challenges. We present Alpaca (Automated Lightweight Provenance Capture), a tool that captures fine-grained provenance information with minimal user intervention when running data analysis pipelines implemented in Python scripts. Alpaca records inputs, outputs, and function parameters and structures information according to the W3C PROV standard. We demonstrate the tool using a realistic use case involving multichannel local field potential recordings of a neurophysiological experiment, highlighting how the tool makes result details known in a standardized manner in order to address the challenges of the analysis process. Ultimately, using Alpaca will help to represent results according to the FAIR principles, which will improve research reproducibility and facilitate sharing the results of data analyses.
001024078 536__ $$0G:(DE-HGF)POF4-5235$$a5235 - Digitization of Neuroscience and User-Community Building (POF4-523)$$cPOF4-523$$fPOF IV$$x0
001024078 536__ $$0G:(EU-Grant)945539$$aHBP SGA3 - Human Brain Project Specific Grant Agreement 3 (945539)$$c945539$$fH2020-SGA-FETFLAG-HBP-2019$$x1
001024078 536__ $$0G:(DE-Juel-1)iBehave-20220812$$aAlgorithms of Adaptive Behavior and their Neuronal Implementation in Health and Disease (iBehave-20220812)$$ciBehave-20220812$$x2
001024078 536__ $$0G:(DE-Juel1)JL SMHB-2021-2027$$aJL SMHB - Joint Lab Supercomputing and Modeling for the Human Brain (JL SMHB-2021-2027)$$cJL SMHB-2021-2027$$x3
001024078 536__ $$0G:(DE-HGF)ZT-I-0003$$aHAF - Helmholtz Analytics Framework (ZT-I-0003)$$cZT-I-0003$$x4
001024078 536__ $$0G:(EU-Grant)785907$$aHBP SGA2 - Human Brain Project Specific Grant Agreement 2 (785907)$$c785907$$fH2020-SGA-FETFLAG-HBP-2017$$x5
001024078 588__ $$aDataset connected to DataCite
001024078 650_7 $$2Other$$aNeurons and Cognition (q-bio.NC)
001024078 650_7 $$2Other$$aFOS: Biological sciences
001024078 7001_ $$0P:(DE-Juel1)178793$$aUlianych, Danylo$$b1
001024078 7001_ $$0P:(DE-Juel1)144168$$aGrün, Sonja$$b2$$ufzj
001024078 7001_ $$0P:(DE-HGF)0$$aDecker, Stefan$$b3
001024078 7001_ $$0P:(DE-Juel1)144807$$aDenker, Michael$$b4$$ufzj
001024078 773__ $$a10.48550/ARXIV.2311.09672
001024078 8564_ $$uhttps://juser.fz-juelich.de/record/1024078/files/2311.09672.pdf$$yOpenAccess
001024078 8564_ $$uhttps://juser.fz-juelich.de/record/1024078/files/2311.09672.gif?subformat=icon$$xicon$$yOpenAccess
001024078 8564_ $$uhttps://juser.fz-juelich.de/record/1024078/files/2311.09672.jpg?subformat=icon-1440$$xicon-1440$$yOpenAccess
001024078 8564_ $$uhttps://juser.fz-juelich.de/record/1024078/files/2311.09672.jpg?subformat=icon-180$$xicon-180$$yOpenAccess
001024078 8564_ $$uhttps://juser.fz-juelich.de/record/1024078/files/2311.09672.jpg?subformat=icon-640$$xicon-640$$yOpenAccess
001024078 909CO $$ooai:juser.fz-juelich.de:1024078$$pdnbdelivery$$pec_fundedresources$$pVDB$$pdriver$$popen_access$$popenaire
001024078 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)180365$$aForschungszentrum Jülich$$b0$$kFZJ
001024078 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)144168$$aForschungszentrum Jülich$$b2$$kFZJ
001024078 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)144807$$aForschungszentrum Jülich$$b4$$kFZJ
001024078 9131_ $$0G:(DE-HGF)POF4-523$$1G:(DE-HGF)POF4-520$$2G:(DE-HGF)POF4-500$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-5235$$aDE-HGF$$bKey Technologies$$lNatural, Artificial and Cognitive Information Processing$$vNeuromorphic Computing and Network Dynamics$$x0
001024078 9141_ $$y2024
001024078 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
001024078 920__ $$lno
001024078 9201_ $$0I:(DE-Juel1)IAS-6-20130828$$kIAS-6$$lComputational and Systems Neuroscience$$x0
001024078 9201_ $$0I:(DE-Juel1)INM-10-20170113$$kINM-10$$lJara-Institut Brain structure-function relationships$$x1
001024078 9201_ $$0I:(DE-Juel1)INM-6-20090406$$kINM-6$$lComputational and Systems Neuroscience$$x2
001024078 980__ $$apreprint
001024078 980__ $$aVDB
001024078 980__ $$aUNRESTRICTED
001024078 980__ $$aI:(DE-Juel1)IAS-6-20130828
001024078 980__ $$aI:(DE-Juel1)INM-10-20170113
001024078 980__ $$aI:(DE-Juel1)INM-6-20090406
001024078 9801_ $$aFullTexts