001     1024078
005     20250203103104.0
024 7 _ |a 10.48550/ARXIV.2311.09672
|2 doi
024 7 _ |a 10.34734/FZJ-2024-01958
|2 datacite_doi
037 _ _ |a FZJ-2024-01958
100 1 _ |a Köhler, Cristiano André
|0 P:(DE-Juel1)180365
|b 0
|e Corresponding author
|u fzj
245 _ _ |a Facilitating the sharing of electrophysiology data analysis results through in-depth provenance capture
260 _ _ |c 2023
|b arXiv
336 7 _ |a Preprint
|b preprint
|m preprint
|0 PUB:(DE-HGF)25
|s 1712647400_29217
|2 PUB:(DE-HGF)
336 7 _ |a WORKING_PAPER
|2 ORCID
336 7 _ |a Electronic Article
|0 28
|2 EndNote
336 7 _ |a preprint
|2 DRIVER
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a Output Types/Working Paper
|2 DataCite
520 _ _ |a Scientific research demands reproducibility and transparency, particularly in data-intensive fields like electrophysiology. Electrophysiology data is typically analyzed using scripts that generate output files, including figures. Handling these results poses several challenges due to the complexity and interactivity of the analysis process. These stem from the difficulty to discern the analysis steps, parameters, and data flow from the results, making knowledge transfer and findability challenging in collaborative settings. Provenance information tracks data lineage and processes applied to it, and provenance capture during the execution of an analysis script can address those challenges. We present Alpaca (Automated Lightweight Provenance Capture), a tool that captures fine-grained provenance information with minimal user intervention when running data analysis pipelines implemented in Python scripts. Alpaca records inputs, outputs, and function parameters and structures information according to the W3C PROV standard. We demonstrate the tool using a realistic use case involving multichannel local field potential recordings of a neurophysiological experiment, highlighting how the tool makes result details known in a standardized manner in order to address the challenges of the analysis process. Ultimately, using Alpaca will help to represent results according to the FAIR principles, which will improve research reproducibility and facilitate sharing the results of data analyses.
536 _ _ |a 5235 - Digitization of Neuroscience and User-Community Building (POF4-523)
|0 G:(DE-HGF)POF4-5235
|c POF4-523
|f POF IV
|x 0
536 _ _ |a HBP SGA3 - Human Brain Project Specific Grant Agreement 3 (945539)
|0 G:(EU-Grant)945539
|c 945539
|f H2020-SGA-FETFLAG-HBP-2019
|x 1
536 _ _ |a Algorithms of Adaptive Behavior and their Neuronal Implementation in Health and Disease (iBehave-20220812)
|0 G:(DE-Juel-1)iBehave-20220812
|c iBehave-20220812
|x 2
536 _ _ |a JL SMHB - Joint Lab Supercomputing and Modeling for the Human Brain (JL SMHB-2021-2027)
|0 G:(DE-Juel1)JL SMHB-2021-2027
|c JL SMHB-2021-2027
|x 3
536 _ _ |a HAF - Helmholtz Analytics Framework (ZT-I-0003)
|0 G:(DE-HGF)ZT-I-0003
|c ZT-I-0003
|x 4
536 _ _ |a HBP SGA2 - Human Brain Project Specific Grant Agreement 2 (785907)
|0 G:(EU-Grant)785907
|c 785907
|f H2020-SGA-FETFLAG-HBP-2017
|x 5
588 _ _ |a Dataset connected to DataCite
650 _ 7 |a Neurons and Cognition (q-bio.NC)
|2 Other
650 _ 7 |a FOS: Biological sciences
|2 Other
700 1 _ |a Ulianych, Danylo
|0 P:(DE-Juel1)178793
|b 1
700 1 _ |a Grün, Sonja
|0 P:(DE-Juel1)144168
|b 2
|u fzj
700 1 _ |a Decker, Stefan
|0 P:(DE-HGF)0
|b 3
700 1 _ |a Denker, Michael
|0 P:(DE-Juel1)144807
|b 4
|u fzj
773 _ _ |a 10.48550/ARXIV.2311.09672
856 4 _ |y OpenAccess
|u https://juser.fz-juelich.de/record/1024078/files/2311.09672.pdf
856 4 _ |y OpenAccess
|x icon
|u https://juser.fz-juelich.de/record/1024078/files/2311.09672.gif?subformat=icon
856 4 _ |y OpenAccess
|x icon-1440
|u https://juser.fz-juelich.de/record/1024078/files/2311.09672.jpg?subformat=icon-1440
856 4 _ |y OpenAccess
|x icon-180
|u https://juser.fz-juelich.de/record/1024078/files/2311.09672.jpg?subformat=icon-180
856 4 _ |y OpenAccess
|x icon-640
|u https://juser.fz-juelich.de/record/1024078/files/2311.09672.jpg?subformat=icon-640
909 C O |o oai:juser.fz-juelich.de:1024078
|p openaire
|p open_access
|p driver
|p VDB
|p ec_fundedresources
|p dnbdelivery
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 0
|6 P:(DE-Juel1)180365
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 2
|6 P:(DE-Juel1)144168
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 4
|6 P:(DE-Juel1)144807
913 1 _ |a DE-HGF
|b Key Technologies
|l Natural, Artificial and Cognitive Information Processing
|1 G:(DE-HGF)POF4-520
|0 G:(DE-HGF)POF4-523
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-500
|4 G:(DE-HGF)POF
|v Neuromorphic Computing and Network Dynamics
|9 G:(DE-HGF)POF4-5235
|x 0
914 1 _ |y 2024
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
920 _ _ |l no
920 1 _ |0 I:(DE-Juel1)IAS-6-20130828
|k IAS-6
|l Computational and Systems Neuroscience
|x 0
920 1 _ |0 I:(DE-Juel1)INM-10-20170113
|k INM-10
|l Jara-Institut Brain structure-function relationships
|x 1
920 1 _ |0 I:(DE-Juel1)INM-6-20090406
|k INM-6
|l Computational and Systems Neuroscience
|x 2
980 _ _ |a preprint
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)IAS-6-20130828
980 _ _ |a I:(DE-Juel1)INM-10-20170113
980 _ _ |a I:(DE-Juel1)INM-6-20090406
980 1 _ |a FullTexts


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21