arXiv:2311.09672v1 [g-bio.NC] 16 Nov 2023

B<I For correspondence:
c.koehler@fz-juelich.de

Keywords: provenance, data
analysis, electrophysiology,
Python, software, FAIR, workflow

Funding: This work was
performed as part of the
Helmholtz School for Data Science
in Life, Earth and Energy (HDS-LEE)
and received funding from the
Helmholtz Association of German
Research Centres. This project has
received funding from the
European Union's Horizon 2020
Framework Programme for
Research and Innovation under
Specific Grant Agreements No.
785907 (Human Brain Project
SGA2) and 945539 (Human Brain
Project SGA3), the Ministry of
Culture and Science of the State of
North Rhine-Westphalia, Germany
(NRW-network "iBehave", grant
number: NW21-049), the Joint Lab
"Supercomputing and Modeling
for the Human Brain", and by the
Helmholtz Association Initiative
and Networking Fund under
project number ZT-I-0003.

Competing interests: The
authors declare no competing
interests.

Facilitating the sharing of
electrophysiology data analysis
results through in-depth provenance
capture

Cristiano A. Kéhler © 2 Danylo Ulianych “ ', Sonja Griin © "2, Stefan Decker “ 34,
Michael Denker

TInstitute of Neuroscience and Medicine (INM-6) and Institute for Advanced Simulation
(IAS-6) and JARA Institute Brain Structure-Function Relationships (INM-10), Julich
Research Centre, Julich, Germany; Theoretical Systems Neurobiology, RWTH Aachen
University, Aachen, Germany; 3Chair of Databases and Information Systems, RWTH
Aachen University, Aachen, Germany; 4Fraunhofer Institute for Applied Information
Technology (FIT), Sankt Augustin, Germany

Abstract

Scientific research demands reproducibility and transparency, particularly in data-intensive fields
like electrophysiology. Electrophysiology data is typically analyzed using scripts that generate
output files, including figures. Handling these results poses several challenges due to the
complexity and interactivity of the analysis process. These stem from the difficulty to discern the
analysis steps, parameters, and data flow from the results, making knowledge transfer and
findability challenging in collaborative settings. Provenance information tracks data lineage and
processes applied to it, and provenance capture during the execution of an analysis script can
address those challenges. We present Alpaca (Automated Lightweight Provenance Capture), a
tool that captures fine-grained provenance information with minimal user intervention when
running data analysis pipelines implemented in Python scripts. Alpaca records inputs, outputs,
and function parameters and structures information according to the W3C PROV standard. We
demonstrate the tool using a realistic use case involving multichannel local field potential
recordings of a neurophysiological experiment, highlighting how the tool makes result details
known in a standardized manner in order to address the challenges of the analysis process.
Ultimately, using Alpaca will help to represent results according to the FAIR principles, which will
improve research reproducibility and facilitate sharing the results of data analyses.

1 Introduction

Electrophysiology methods are routinely used to investigate brain function, including the measure-
ment of extracellular potentials using microelectrodes implanted into brain tissue (Buzsaki et al.,
2012; Huang, 2016). The first electrophysiology experiments acquired potentials from single or
few implanted electrodes, which limited the data throughput of the experiments. However, recent
technological advances produced large-density electrode arrays and data acquisition systems able
to record hundreds of channels from heterogeneous sources in the experiment sampled at high

Kohleretal. | arXiv | November 17,2023 | 1-38



resolution (Hong and Lieber, 2019). It is now possible to perform massive and parallel recordings
during electrophysiology experiments (Buzsaki, 2004) that result in datasets that are both complex
in structure and large in volume.

For the analysis of such datasets, this introduces two major consequences. First, the analy-
sis will often be partially conducted in an exploratory style, where the analysis parameters and
selection of datasets are probed interactively by the scientists. Keeping track of these choices
and approaches is particularly challenging for the scientist in the context of complex data. Sec-
ond, the analysis of modern datasets often requires advanced methods (e.g., Brown et al., 2004;
Stevenson and Kording, 2011) that are implemented as workflows composed of several interde-
pendent scripts (see, e.g., Denker and Grun, 2016, for a detailed description). The highly diverse
and distributed results from the parallel and intertwined processing pipelines operating on com-
plex data must be organized and described in a manner that is comprehensible not only to the
original author of the analysis workflow but also in a collaborative context. Taken together, the
full workflow including interactive and pipeline approaches, starting from the experimental data
acquisition to the presentation of final results, is subject to a hierarchical decision-making process,
frequent changes and a large number of processing steps. With growing complexity, these aspects
are increasingly difficult to follow, especially in collaborative contexts, where results of analyses ex-
ecuted by different scientists are shared.

The resulting lack of reproducibility undermines the scientific investigations and the public trust
in the scientific method and results (cf., e.g., Baker, 2016). In collaborative environments, the de-
tails of an executed analysis workflow should not only be fully documented but also readily un-
derstandable by all partners. Thus, work in collaboration could be improved further by directly
capturing provenance information on a coarser level of granularity that is informative of the data
manipulations throughout the execution of an analysis workflow leading to a certain analysis result
(Pimentel et al., 2019; Ragan et al., 2016). By using a provenance tracking system during workflow
execution, all operations performed on a given data object can be described and stored in an acces-
sible and structured way that is comprehensible to a human. For the analysis of an electrophysiol-
ogy dataset, those operations consist of specific analysis methods or processes, such as applying
a bandpass filter, downsampling a specific recorded signal, or generating a plot. Ultimately, the
details relevant for the final interpretation of the results can be captured and, ideally, stored as
metadata with the analysis results. These may then represent summaries of the analysis flow and
lead to a description of the results that improve findability, interoperability and reusability of the
results (FAIR principles, see Wilkinson et al., 2016).

Several tools to track and record provenance within (analysis) workflows and single scripts ex-
ist, spanning different domains (Pimentel et al., 2019; Ragan et al., 2016). The tools take different
approaches depending on which type of information to capture (e.g., tracing code execution, cap-
turing user interactions, or monitoring operating system calls), and the implementation varies ac-
cording to the intended use of the captured provenance information and its granularity (Bavoil et
al., 2005; Davison et al., 2014; Koster and Rahmann, 2012; MacKenzie-Graham et al., 2008; Murta
et al., 2015; Pizzi et al.,, 2016). Although some of these solutions might be adapted or even com-
bined to use in the analysis of electrophysiology data, none of these are designed and optimized
with the particularities of this type of analysis setting in mind. One of these particularities to con-
sider is the ease of use with custom analysis scripts. A workflow management system (WMS) such
as VisTrails (Bavoil et al., 2005), for instance, requires the construction of workflows from analysis
modules implemented as part of the WMS framework or by writing plugins, when the user might
need the flexibility and interactivity of custom scripts. Likewise, a tool such as AiiDA (Pizzi et al.,
2016) provides a full workflow ecosystem that requires the development of plugins and wrappers
to interface and enforces its own data types, hindering the reuse of existing code and libraries
without considerable effort. A second aspect to consider is the level of detail and suitability of the
provenance information. For individual scripts, tools like noWorkflow (Murta et al., 2015) produce
a provenance trail that is highly detailed and without semantic meaning, making it difficult for the
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scientist to extract information. In contrast, a tool like Sumatra (Davison et al., 2014) will record a
more global context in which a script is run in the command line (script parameters, execution en-
vironment, version history and links to the output files), while specific operations inside the script
will not be detailed. Solutions to orchestrate a series of scripts, like Snakemake (Koster and Rah-
mann, 2012), produce flow graphs that show the flow of execution for the scripts composing a
workflow but lack the actions performed within each script such that more detailed provenance
metadata must be manually recorded by the user without any standardization. Finally, a last as-
pect is the specificity of the tools for a certain scientific domain. For example, a tool like LON/
Pipeline, that supports full workflows with provenance tracking for the analysis of neuroimaging
data (MacKenzie-Graham et al., 2008), could be readily used in some analysis scenarios. However,
the specificity of the available workflow components is a disadvantage for the user that wants to
implement pipelines that fall outside of the scope of the intended use.

This work sets out to address the challenges associated with the analysis of an electrophysiology
dataset and sharing the results. To accomplish this, a novel tool was implemented to capture the
suitable scope of provenance information and store it as metadata together with results generated
by analysis scripts implemented in the Python programming language. A typical analysis scenario
is presented as a use case and then the tool is analyzed with respect to the challenges it aims to
address.

2 Materials and Methods

2.1 Challenges for provenance capture during the analysis of electrophysiology
data

We argue that a tool to capture provenance information during the analysis of electrophysiology
data has to deal with four principle scenarios: (i) the analyses often require several preprocessing
steps before any analytical method is applied; (ii) the data analysis process is often not linear but
intertwined and therefore exhibits a certain level of intricacy; (iii) parameters of the analysis are
frequently and often interactively probed; and (iv) the final results are likely to be published or
used in shared environments. In the following, we describe these scenarios in detail and derive
four associated challenges for capturing provenance.

Preprocessing is a typical step in the analysis, and is usually custom-tailored to a particular
project (Fig. 1A). For instance, data from a recording session of multiple trials (e.g., repeated stim-
ulus presentations or behavioral responses) is usually recorded as a single data stream and only
during the analysis cut into the individual trial epochs relevant to the analysis goal. Due to the high
level of heterogeneity in the data, this is frequently achieved using custom scripts, with parameters
that are specific to the trial structure and design of the experiment (e.g., selecting only particular
trials according to behavioral responses such as reaction time). The scientist's written documenta-
tion, source code, and, in many cases, the data itself, would need to be inspected to understand all
these steps, e.g., the chunking of the data that was performed before the core analysis. Therefore,
afirst challenge is to clearly document the processing in an accessible and automated manner and
to provide this information as supplement to the analysis output.

The full analysis pipeline from the dataset to a final result artefact is likely not built in one
attempt, but instead involves a continuous development (Fig. 1B). For instance, as new data is ob-
tained, time series may need to be excluded from analysis and new hypotheses are generated.
Therefore, the analysis scripts may be updated to include additional analysis steps, and the result-
ing code will have increasing complexity. One solution to organize this agile process is to use a
WMS (e.g., Snakemake; Kbster and Rahmann, 2012) coupled with a code versioning system such as
git. For each run, the WMS will provide coarse provenance information, such as the name of the
script, environment information, script parameters, and files that were used or generated. The
scripts can then be tracked to specific versions knowing the git commit history. However, if multi-
ple operations (e.g., cutting data, downsampling and filtering) are performed inside one script, the
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Figure 1: Overview of the four representative scenarios leading to challenges associated with the analysis of an elec-
trophysiology dataset. A. Data frequently requires preprocessing before the analytic methods are applied. This step is often
customized for each project, resulting in distinct pipelines that are typically implemented on the level of a script for reasons of
efficiency. B. The structure of an analysis script is not static throughout the analysis process. It can be updated to accommodate
new data or hypotheses. This results in multiple versions of scripts with increasingly complex pipelines, which are associated
with distinct versions of the results. C. Relevant parameters for the analyses are often probed interactively, with the subsequent
results changing in time. Keeping track of the exact parameters used for specific results becomes difficult. D. Use of results
in shared environments and publishing results requires making available the details of the analysis process to all collaborators.
Finding specific results in a shared repository of results from different collaboration partners is difficult, as relevant parameters
may be stored in a non-machine-readable format inside the result file, or cryptically in file names.
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actual parameters in each step are possibly not captured as part of the provenance. This is the
case where provenance information shows only script parameters passed by command line. The
mapping of command-line to the actual parameters used by the functions in the script relies on
the correct implementation of the code, and any default parameters for the function that are not
passed by command-line will not be known. Furthermore, itis not possible to inspect each interme-
diate (in-memory) data object during the execution of the script. Yet, without knowledge of these
data operations and the data flow it becomes challenging to compare results generated by multi-
ple versions of the evolving analysis script, in particular if the code structure of the script changes
over time. A solution to this challenge could be to break such complex scripts in several smaller
scripts, such that the coarse provenance information of the WMS could be more descriptive of each
individual process and intermediate results would be saved to disk (i.e., in our example, separate
scripts for cutting, downsampling and filtering). However, this may be inconvenient and inefficient:
resource-intensive operations (e.g., file loading and writing) might be repeated across different
scripts, and temporary files would have to be used between the steps, instead of efficiently ma-
nipulating data in memory. Moreover, this approach limits the expressiveness and creativity of
defining data operations as opposed to the full set of operations offered by the programming lan-
guage in a single script. Therefore, a second challenge is to efficiently capture the parameters and
the data flow associated with the analysis steps of the script.

The parameters that control the final analysis output are frequently probed interactively (Fig. 1C).
For example, the scientist performing the analysis could write a Jupyter notebook (Kluyver et al.,
2076) to find specific frequency cutoffs for a filtering step. In one scenario, code cells of the note-
book can be run in arbitrary sequences, with some parameters being changed in the process until
a result artifact (e.g., a plot) is saved in a file. In a different scenario, it is possible to generate sev-
eral versions of a given file by the same notebook, each of which overwrites the previous version.
At this point, the scientist performing the analysis might rely in the associated jupyter history or
versioning of the notebook/files using git. However, the relevant parameters that were used to
generate results saved in last version of the file would be difficult to recall. Ultimately, a detailed
documentation by the user or retracing the source code according to an execution history is still
required. Therefore, a third challenge is to retain a documentation of the interactive generation of
the analysis result that is explicitly and unambiguously linked to the generated result file.

The fourth challenge stems from the situation where results (e.g., plots) are likely to be pub-
lished or used in collaborative environments (Fig. 1D). This includes files uploaded in a manuscript
submission, or files deposited in a shared folder or sent via e-mail between collaborators. The
interpretation of the stored results depends on the understanding of the analysis details and its
relevant parameters by the collaboration partner. Moreover, searching for specific results in a
large collection of shared files can be difficult: not all the relevant parameters are recorded in the
file name, and are likely stored as non machine-readable information within the file (e.g., an axis
label in a figure). In these situations, analysis provenance stored together with the shared result
files as structured and comprehensible metadata should improve information transfer in the col-
laboration and findability of the results.

2.2 Use case scenario

As a use case scenario, we consider an analysis that computed the mean power spectral densities
(PSDs) from a publicly available dataset containing massively parallel electrophysiological record-
ings (raw electrode signals, local field potentials, and spiking activity) in the motor cortex of mon-
keys in a behavioural task involving movement planning and execution. The experiment details,
data acquisition setup, and resulting datasets were previously described (Brochier et al., 2018).
Briefly, two subjects (monkey N and monkey L) were implanted with one Utah electrode array (96
active electrodes) in the primary motor/premotor cortices. Subjects were trained in an instructed
delayed reach-to-grasp task. In a trial, the monkey had to grasp a cubic object using either a side
grip (SG) or a precision grip (PG). The SG consists of the subject grasping the object with the tip of
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the thumb and the lateral surface of the other fingers, on the lateral sides of the object. The PG
consists of the subject placing the tips of the thumb and index finger on a groove on the upper and
lower sides of the object. The monkey had to pull the object against a load that required either a
low (LF) of high pulling force (HF). The grip and force instructions were presented through an LED
panel using two different visual cue signals (CUE and GO), respectively, which were separated by
a 1000 ms delay (Fig. 2A). As a result of the combination of the grip and force conditions, four trial
types were possible: SGLF, SGHF, PGLF, and PGHF. A recording session consisted of several repe-
titions of each trial type that were acquired continuously in a single recording file. Neural activity
was recorded during the session using a Blackrock Microsystems Cerebus data acquisition system,
with the raw electrode signals bandpass-filtered between 0.3 and 7500 Hz at the headstage level
and digitized at 30 KHz with 16-bit resolution (0.25 V/bit, raw signal). The behavioral events were
simultaneously acquired through the digital input port that stored 8-bit binary codes as received
from the behavioral apparatus controller.

The experimental datasets are provided in the Neuroscience Information Exchange (NIX") format,
developed with the aim to provide standardized methods and models for storing neuroscience
data together with their metadata (Stoewer et al., 2014). Inside the NIX file, data are represented
according to the data model provided by the Neo? Python library (Garcia et al., 2014). Neo provides
several features to work with electrophysiology data. First, it allows loading data files written using
open standards such as NIX as well as proprietary formats produced by specific recording systems
(e.g., Blackrock Microsystems, Plexon, Neuralynx, among others). Second, it implements a data
model to load and structure information generated by the electrophysiology experiment in a stan-
dardized representation. This includes time series of data acquired continuously in samples (such
as the signals from electrodes or analog outputs of a behavioral apparatus) or timestamps (such as
spikes in an electrode or digital events produced by a behavioral apparatus). Third, Neo provides
typical manipulations and transformations of the data, such as downsampling the signal from elec-
trodes or extracting parts of the data at specific recording intervals. The objects may store relevant
metadata, such as names of signal sources, channel labels, or details on the experimental protocol.
In this use case scenario, Neo was used to load the datasets and manipulate the data during the
analysis.

The relevant parts of the structure and relationships between objects of the Neo data model are
briefly represented in Fig. 2B. The Neo library is based on two types of objects: data and containers.
Different classes of data objects exist, depending on the specific information to be stored. Data
objects are derived from Quantity arrays that are provided by the Python quantities package® and
provide NumPy arrays with attached physical units. The AnalogSignal is used to store one or more
continuous signals (i.e., time series) sampled at a fixed rate, such as the 30 kHz raw signal captured
from each of the 96 electrodes in the Utah array. The Event object is used to store one or multiple
labeled timestamps, such as the behavioral events throughout the trials acquired from the digital
port of the recording system. The container objects are used to group data objects together, and
these are accessed through specific collections (lists) present in the container. The top-level con-
tainer is the Block object that stores general descriptions of the data and has one or more Segment
objects accessible by the segments attribute. The Segment object groups data objects that share a
common time axis (i.e., they start and end within the same recording time, defined by the ¢_start
and t_stop attributes; Fig. 2C). The Segment object also has collections to store specific data objects:
analogsignals is a list of the AnalogSignal data objects, and events is a list of the Event data objects.

The Neo data model also defines a framework for metadata description as key-value pairs for its
data and container objects through annotations and array annotations. Annotations may be added
to any Neo object. They contain information that are applicable to the complete object, such as the
hardware filter settings that apply to all channels contained in an AnalogSignal object. Array anno-

TRRID:SCR_016196; https://nixio.readthedocs.io
2RRID:SCR_000634; https://neuralensemble.org/neo
3https://github.com/python-quantities/python-quantities
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Figure 2: Overview of the delayed reach-to-grasp task and Neo data model. The datasets from the experiment were used
for use case scenario for capturing provenance during the analysis of electrophysiology data, and Neo was used to load and
manipulate the data in the analysis script. A. Description of the experimental protocol (cf. Brochier et al., 2018 for details). The
monkey is instructed to grasp an object using either a side grip (SG) or precision grip (PG), and this is identified as the CUE-ON
event. After a 1 s delay, a GO signal (GO-ON event) marks the start of the movement and indicates whether to pull the object
with either low (LF) or high (HF) force. Several behavioral events occur during a trial (marked on the time line). B. Overview
of the Neo data model defining container objects (shown here: Block and Segment) and data objects (shown here: AnalogSignal
and Event). Supporting metadata are stored as annotations and array_annotations dictionaries (gray shading). Annotations are
single values associated with a key (e.g., subject_ name). Array annotations are stored in arrays with the length of the data (e.g.,
number of events in Event or number of channels in AnalogSignal). Segment objects group data objects in specific windows of
time (given by attributes ¢_start and t_stop). Event objects are arrays with timestamps of labeled events. AnalogSignal objects are
two-dimensional arrays (first dimension: time, second dimension: channels) where the time axis is determined by the ¢ start
and sampling rate attributes. The units attribute identifies the physical unit associated with the data array (e.g., microvolts for
AnalogSignal and seconds for Event). C. Time-homogeneous representation of two data elements of the dataset (AnalogSignal and
Event) stored inside a Segment container. Selected timestamps and corresponding values of the array annotation trial_event_labels
of the Event object are presented in blue. Image in panel A is adapted from Brochier et al., 2018, licensed under the Creative
Commons Attribution 4.0 International License.
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tations may be added to Neo data objects only. They contain information stored in arrays, whose
length corresponds to the number of elements in the data. They are used to provide metadata for
a particular element in the data stored in the object. For instance, in the Event object representing
the behavioral events in the reach-to-grasp task, the trial_event_labels array annotation stores the
decoded event string associated with each event timestamp stored in the object (Fig. 2C). In the
end, all the data in the NIX dataset is loaded into Neo data objects that encapsulate all the relevant
metadata.

In the use case scenario, the PSDs were analyzed for each subject (monkey N and monkey L),
and the mean PSD was computed for each of the four trial types present in the experiment (Fig. 3).
Although a single Python script (named psd_by._trial_type.py) was used to produce the plot (stored as
R2G_PSD_all_subjects.png), the actual analysis algorithm is complex (shown in a schematic form in
Fig.4). In atypical scenario, afile such as R2G_PSD_all_subjects.png could be stored in a shared folder
or even sent to collaborators by e-mail. At this point, several key information cannot be obtained
from the plot alone: (i) How were the trials defined, i.e., which time points or behavioral events were
used as start and end points to cut the data in the data preprocessing? (ii) Was any filtering applied
to the raw signal, before the computation of the PSD? (iii) Several methods are available to obtain
the PSD estimate, each with particular features that may affect the estimation of the spectrum (see
Welch, 1967 and Percival and Walden, 1993). Which method was used in this analysis, and what
were the relevant parameters (e.g., for frequency resolution)? (iv) How was the aggregation per-
formed (i.e., method and number of trials). What do the shaded area intervals around the plot lines
represent? In addition to these questions, the contents of a plot such R2G_PSD_all_subjects.png may
be the result of several iterations of exploratory analyses and development of psd_by trial_type.py.
In our scenario, parameters that could have been iteratively probed or improved could be the iden-
tification of failed electrodes, definition of a suitable time window for cutting the data from a full
trial, or to select specific filter cutoffs. Therefore, R2G_PSD_all_subjects.png could be overwritten
after psd_by trial_type.py was run with different parameters or different versions of the code. Alto-
gether, the exhaustive set of steps and definitions used for the generation of the analysis result is
not apparent from R2G_PSD_all_subjects.png. Even with a good description such as the flowchart in
Fig. 4, that could be added as accompanying documentation, the exact parameters used for func-
tion calls are still missing, especially if these were determined during run-time (such as the number
of trials in the dataset).

In the end, the only way of getting those relevant details of the analysis is by directly inspecting
psd_by trial_type.py. The difficulties associated with this approach are illustrated in Fig. 5. For a
simple code snippet (Fig. 5A), which iterates over a list of trial data to apply a Butterworth filter and
then downsample the signal, it is not possible to visualize the state of the data for each iteration
(e.g., the array shape). In addition, the actual contents of the variables are unknown. A robust data
model like Neo helps to understand which objects were accessed during each iteration. However,
even when using that framework, the exact data objects and their transformations in each iteration
of the for-loop are not apparent from the code given that the object instances (including attributes,
such as the shape of an array) are only available during run time. One example of such information
that exists only at run time is the number of trials (i.e., the number of Segment objects returned
by cut_segment_by_epoch) and the number of channels (i.e., the shape of the AnalogSignal object in
each loop iteration). Unless running the script again with the same dataset and explicitly outputting
this information, it is not possible to know. In contrast, by capturing and structuring the relevant
provenance during the execution, a representation could be obtained in a way that all relevant
information is accessible after the run (Fig. 5B). The detailed trace ultimately shows which part of
the data and the resulting intermediate objects were used during each iteration.
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Figure 3: Output of the analysis workflow implemented in the script psd_by trial_type.py in the context of the use case
scenario. This plot was stored as a PNG file named R2G_PSD_all_subjects.png.

2.3 Alpaca: a tool for automatic and lightweight provenance capture in Python
scripts

As the analysis of electrophysiology datasets is usually based on scripts such as psd_by_trial_type.py,
we set to implement Alpaca (Automated Lightweight ProvenAnce CApture) as a tool to capture the
provenance information that describes the main steps implemented in scripts that process data.
The captured information can be stored as a metadata file that is associated with the result file(s)
generated by the script (e.g., the plot in Fig. 3 stored in R2G_PSD_all_subjects.png). Alpaca can be
used for scripts written in the Python programming language as Python is free and open source,
and has been gaining popularity among the neuroscience community (Muller et al., 2015). Python
is also frequently used in the analysis of electrophysiology data, and several dedicated open source
packages are available, such as the Neo and NWB* (Rubel et al., 2022) frameworks for electrophys-
iology data representation, the unified spike sorting pipeline Spikelnterface® (Buccino et al., 2020),
and Elephant® (Denker et al., 2018) for data analysis. Therefore, a tool implemented in Python will

have greater impact in the neuroscience community, as no licenses or fees are required and it

builds on already established state-of-the-art processing and analysis tools.

The functionality of Alpaca is illustrated in Fig. 6. Alpaca is based on a Python function decora-
tor’ that supports tracking the individual steps of the analysis and constructing a provenance trace.
In addition, Alpaca serializes the captured provenance information (Fig. 6A) as a metadata file en-
coded in the RDF® format (Adida et al., 2015) according to the data model defined in the W3C® PROV
standard (PROV-DM; Belhajjame et al., 2013a). PROV is an open standard that was developed to
allow the interoperability of provenance information in heterogeneous environments (Groth and

4Neurodata Without Borders; RRID:SCR_015242; https://www.nwb.org

SRRID:SCR_021150; https://spikeinterface.readthedocs.io

6Electrophysiology Analysis Toolkit; RRID:RRID:SCR_003833; https://python-elephant.org

7A Python decorator allows adding new functionality to existing functions without changing their behavior.

8Resource Description Framework, a general model for description and exchange of graph data.
SWorld Wide Web Consortium, https://www.w3.0rg
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Figure 4: Flowchart of the analysis implemented as use case scenario. The code for this algorithm is implemented in
psd_by_trial_type.py. The main steps are composed by three nested loops (purple hexagons): for each inputfile, a second loop runs
over the 4 possible trial types, extracting the data of the individual trial epochs. After that, for each trial, the channel-wise PSDs
are computed and the power density estimates from all channels are subsequently aggregated. At the end of each trial type loop,
the single-trial PSDs are aggregated and plotted. After the last input file is processed, the plot is saved to R2G_PSD_all_subjects.png.
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trial_segments = cut_segment_by epoch(data_segment, trial_epochs)
for trial in trial_segments:

filtered_signal = butter(trial.analogsignals[0],
lowpass_frequency=250 * pqg.Hz)

downsampled_signal = filtered_signal.downsample(60)
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Iteration 1 Iteration 2

Figure 5: Provenance helps to understand exact data processing during code execution. A. Snippet of code in Python that
iterates over a list with individual trial data to perform a low-pass filter operation using a Butterworth filter followed by downsam-
pling the signal by a factor of 60. In this example, the code uses data objects defined by the Neo framework (Garcia et al., 2014).
The list trial_segments stores several Segment objects. The raw neural signal from the electrode array is stored in AnalogSignal
objects. Note that although knowing the hierarchical structure of Neo helps to understand the implemented code, the actual data
objects and any associated information cannot be accessed, as these exist only during run time. B. Example of a provenance trace
to represent the execution of the code in A. Data objects are represented as ellipses, and functions as rectangles. Two exemplary
iterations of the loop are shown as two separate paths in a graph (highlighted by blue or red color shades, respectively). Dashed
lines represent accessing a data object contained into another data object using a specific Python operation (e.g., subscript or
attribute). Note that the Segment object stored in the variable trial is known for every single iteration, and its transformations are
followed individually. The information associated with each data object (e.g., start and end time of Segment, or the shapes of the
AnalogSignal objects) can be inspected at every stage of the iteration (dashed red rectangles on the right show information for
the second loop iteration). Parameters of the functions called, even if they were not explicitly written in the code, but determined
during run-time, can also be inspected (solid line red rectangles on the right show parameters for each function called in the
second iteration).
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Moreau, 2013). Finally, visualization of the provenance trace is supported by converting the PROV
metadata into graphs that show the data flow within the script and allow the visual inspection of
the captured provenance (Fig. 6B). Alpaca is provided as a standalone Python package that can be
installed from the Python Package Index or directly from the code repository'®. The documentation
with usage examples is available online'".

Several design decisions were adopted in Alpaca. First, the tool captures provenance during
the execution without the need for users to enhance this information with additional metadata
or documentation. Second, code instrumentation is reduced to a minimum level, and users are
asked to make only minor changes in the existing code to enable tracking (see Suppl. Text 1 for
the changes required to track provenance within psd_by_trial_type.py). Third, it is flexible enough to
accommodate different coding styles, and it was designed to be the most compatible with existing
code bases. Therefore, provenance is captured in an automatized and lightweight fashion.

Alpaca assumes that an analysis script such as psd_by._trial_type.py is composed of several func-
tions that are called sequentially (potentially in the context of control flow statements such as
loops), each performing a step in the analysis. The functions in the script may take data as input
and produce outputs based on a transformation of that data, or generate new data. Moreover, a
function may have one or more parameters, that are not data inputs but modify the behavior on
how the function is generating the output. For example, in reshaping an array using the NumPy
function reshape, the new shape would represent a parameter that defines how to reshape the
original array (i.e., input data) into a new array (i.e., the output data). In Python, information to a
function is passed through function arguments, that are accessed by the local code in the function
body that performs the computation. Those are specified in the function declaration using the def
keyword. Therefore, Alpaca utilizes the following definitions to analyze a function call in the script:

+ input: a file or Python object that provides data for the function. It is one of the function
arguments;

+ output: a file or Python object generated by a function. Can be a return value of the function
or one of the function arguments;

« parameter: any other function argument that is neither an input nor an output;

+ metadata: additional information contained in the input/output. For Python objects, these
can be accessible by attributes (i.e., accessed by the dot . after the object name, such as
signal.shape) or annotations stored in dictionaries accessed by special attributes, such the
ones defined in the Neo data model. For files, this is the file path.

2.3.1 Initializing Alpaca
The calls to the functions tracked by Alpaca are expected to be present in a single scope (i.e., the
main script body or a single function such as main). To identify the code to be tracked and start
the capture, the user must insert a call to the activate function at a point in the script before
the corresponding block of code. When calling activate, Alpaca identifies the current script in
execution, obtains the SHA256 hash'? of the source file storing the code, and generates an UUID
(Universally Unique Identifier) to uniquely identify the script execution (session ID). The source
code to be tracked will be analyzed to allow the extraction of each individual code statement later,
during the analysis of each function execution.

Before activating the tracking, the user can set options using the alpaca_settings function.
These settings operate globally within the toolbox and control how Alpaca captures and describes
provenance.

"Ohttps://github.com/INM-6/alpaca

"https://alpaca-prov.readthedocs.io

2A hash is a function that maps data with variable size to fixed-size values. SHA256 is a Secure Hash Algorithm (SHA) that
can be used to verify the identity of files.
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Figure 6: Schematic overview of the functionality of Alpaca. A. The decorator and functions provided by Alpaca are incorpo-
rated into a Python script that processes data (orange rectangle). The script reads an input file and generates another file as result
output. Alpaca tracks the functions called during the execution of the script (represented by the light blue rectangles inside the
orange rectangle) together with the input and output data objects (represented by the brown ellipses within the orange rectangle).
Function parameters and metadata of data objects are also captured. The aggregated information is structured according to the
W3C PROV standard and serialized to a file (dark blue) using RDF acting as a sidecar file to the output file of the script. B. To
visualize the captured provenance, the serialized RDF files can be converted into NetworkX graph objects using Alpaca. The graph
can be adjusted to concentrate on specific information of the captures provenance, or simplified. Finally, the graph can be saved
using graph serialization formats (e.g., GEXF) supported by third-party graph visualization software (e.g., Gephi).
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2.3.2 Tracking the steps of the analysis
The Provenance function decorator is used to wrap each data processing function executed in
the script (Fig. 7). When applying the decorator, the argument names that are either Python ob-
jectinputs, file inputs, or file outputs are identified through the decorator constructor parameters
inputs, file_input, or file_output. When the script is run, for each execution of the function, the
decorator: (i) generates a description of the inputs and outputs; (ii) records the parameters used
in the call; (iii) generates a unique execution UUID (execution ID); and (iv) captures the start/end
timestamps. Finally, this information is used to build a record for the function execution. Prove-
nance has an internal global function execution counter, incremented after the execution of any
function being tracked. The current value is also added to the function execution record, to ob-
tain the order of that execution. Finally, all the execution records are stored in an internal history,
which will be used to serialize the information at the end.

The Provenance decorator analyzes the inputs and outputs to extract the information relevant
for their description and their metadata:

« for Python objects (e.g., an AnalogSignal object), the type information (Python class name and
the module where itis implemented), content hash, and current memory address is recorded.
The content hash is computed using either the hash function from the joblib'* package (using
the SHA1 algorithm) or the builtin Python hash function (that uses the algorithm implemented
inthe__hash__ method of the object). By default, every object will be hashed using joblib. How-
ever, it is possible to define specific packages whose objects will be hashed using the builtin
hash function using the alpaca_settings function. This allows selecting hashing functionality
that may already be implemented in the object (which can be faster), or avoid sensitivity to
minor changes to the object content that will produce a provenance trace that is too detailed.
The values of all object instance attributes (i.e., stored in the __dict__ dictionary) are recorded,
together with the values of the specific attributes when present. This includes, for exam-
ple, shape and dtype for NumPy arrays, or extended attributes such as units, t_start, t_stop,
nix_name, and dimensionality for the AnalogSignal object of Neo representing a measurement
time series. More generic attributes that could be used by other data models, such as id, pid,
or create_time are also captured if present;

for files, the SHA256 file hash is computed using the hashlib package, and the absolute file
path is recorded;

for the Python builtin None, the object hash is an UUID, as it is a special case where the actual
object is shared throughout the execution environment. This avoids duplication.

The information on the function is also extracted: name, module, and version of the package
where itwas implemented (if available through the metadata module from the importlib package im-
plemented in Python 3.8 or higher). Version information is currently not recorded for user-defined
functions (i.e., implemented in the script file being tracked).

Finally, the inputs to a function may be accessed from container objects by subscripts (e.g., an
item in a list such as signals[0]) or attributes (e.g., segment.analogsignals). To capture these static
relationships, the abstract syntax tree of the source code statement containing the current function
call is analyzed, all container objects are identified, and the operations (subscript or attribute) are
added to the execution history. In the end, the container memberships are identified and recorded
if used when passing inputs to a function.

2.3.3 Serialization of the provenance information

The captured provenance is serialized as RDF graph (Adida et al., 2015), using one of the formats
supported by RDFLib'™. The AlpacaProvDocument class is responsible for managing the serial-
ization, based on the history captured by the Provenance decorator. For simplified usage, the

Bhttps://joblib.readthedocs.io
"4https://github.com/RDFLib/rdflib
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Figure 7: Alpaca captures fine-grained provenance information at each step during the execution of Python scripts that
process data. The Provenance decorator is used to wrap each function called in the script. The input and output data objects
for each function are identified, and any embedded object metadata is captured (bottom right and left). Object metadata are
attributes of the objects or special values stored in annotation dictionaries. This takes advantage of available data models for
electrophysiology where experimental details can be stored together with the data as annotations (e.g., Neo). In the example
provided in this paper, the object metadata are attributes such as shape and units, together with annotations such as channel
names in an AnalogSignal with the data recorded from the electrodes. Finally, the parameters of the functions are also identified
(bottom middle). In this example, this is the type of window or the number of segments used in the computation of the PSD
using the welch_psd function, that implements the Welch algorithm. In the end, a full provenance graph with the lineage from the
input files (such as the two NiX files in the example) to the output file with the analysis result (such as R2G_PSD_all_subjects.png) is
produced.
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serialization can be accomplished in a single step by just calling the save_provenance function at
the end of the script execution, passing a destination file and serialization format. All the informa-
tion currently stored in the history in Provenance will be saved to the disk.

For the RDF representation of the captured provenance, the PROV-O ontology (Belhajjame et
al., 2013b) was extended to incorporate properties relevant to the description of the provenance
elements captured by Alpaca. Fig. 8A shows the main classes derived from the SoftwareAgent
(a subclass of Agent), Entity, and Activity classes of the PROV-O ontology, and Fig. 8B shows the
provenance relationships among the classes, as defined in PROV-O. These main classes are:

+ DataObjectEntity: entity used to represent a Python object that was an input or output of a
function;

FileEntity: entity used to represent a file that was an input or output of a function;
FunctionExecution: activity used to represent a single execution of one function with a set
of parameters;

ScriptAgent: agent used to represent the script that was run and executed several functions
in sequence.

In addition to the classes derived from PROV-O, two additional classes are defined in the Al-
paca ontology. They are used to represent specific information in the context of the provenance
captured by Alpaca:

« Function: represents a Python function. It contains code that is executed to perform some
action in the script, and that can take inputs, parameters, and produce outputs (e.g., in our
example, the welch_psd function defined in the spectral module of the Elephant package);

+ NameValuePair: represents information where a value is associated with a name. Name is
a string and value can be any literal (e.g., integers, strings, decimal numbers). This is the main
class used to store function parameters and data object metadata.

The Alpaca ontology also defines specific extended properties which are used to serialize func-
tion parameters, object/file metadata, and function information. They are summarized in Table 1.

For representing memberships, such as objects accessed from attributes (e.g., segment.analogsignals),
indexes (e.g., signals[0]), or slices (e.g., signals[1:5]), the PROV-O hasMember property is used. The
DataObjectEntity representing the container object will have a hasMember property whose value
is the DataObjectEntity representing the element accessed. The element will have one of the
following properties to describe the membership:

« fromAttribute: a string storing the name of the attribute used to access the object in the
container (e.g., analogsignals in segment.analogsignals);

+ containerindex: a string storing the index used to access the object in the container (e.g., 0

in signals[0]). This is not necessarily a number, as Python uses string indexes when accessing

elements in dictionaries;

containersSlice: a string storing the slice used to access the object (e.g., 7:5 in signals[1:5]).

In the RDF graph, each data object, file or function execution is identified by a Uniform Re-
source Name (URN) identifier (Saint-Andre and Klensin, 2017). The functions and script are also
represented by their own URNs. To compose a unique identifier, specific information captured
during the script execution is used in the composition of the final URN string. The authority identi-
fier elementis a string that points to the institute or organisation which has responsibility over the
analysis. It can be set using the alpaca_settings function. The identifiers generated by Alpaca are
summarized in Table 2.

Fig. 9 summarizes how a single function execution is stored in the serialized RDF graph using
the Alpaca ontology and the PROV-O properties.
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Figure 8: The Alpaca ontology used to serialize provenance information. A. Main classes (bottom, filled shapes) derived from
PROV-O (top, unfilled shapes). Objects storing data and files are represented as PROV-O Entities. The execution of a function
is a PROV-O Activity. The script is a PROV-O SoftwareAgent (which in turn is derived from the PROV-O Agent class). B. PROV-O
provenance relationships among the classes in the Alpaca ontology.
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Class

Property

Description

Value

DataObjectEntity

hasAnnotation

the value of an annotation present in the
object. Annotations are stored in dictionar-
ies accessible by either the annotations or
array_annotations object attributes. The an-
notation name is the dictionary key, and
the annotation value is the corresponding
value.

NameValuePair

hasAttribute

the value of an attribute of the object (i.e.,
accessible by the dot such as signal.shape)

NameValuePair

hashSource

one of the three methods used to obtain
the object hash: joblib_SHA1, Python_hash,
or UUID

xsd:string

FileEntity

filePath

the absolute path where the file is located
in the system

xsd:string

FunctionExecution

hasParameter

a parameter passed to the function when
called

NameValuePair

executionOrder value of the global execution counter when  xsd:int
the function was executed
codeStatement statement in the source code that origi- xsd:string
nated the call to the function
usedFunction function that was called Function
ScriptAgent scriptPath absolute path to the file containing the xsd:string
source code of the script being executed
Function functionVersion version of the package where the function  xsd:string
is implemented. If function information is
not available, it will be NA
functionName the name of the function, as written in the  xsd:string
def statement of the Python function defini-
tion
implementedin the full path to the module where the func-  xsd:string
tion is implemented (example: for the rand
function defined in the random module of
the NumPy package, the value of the prop-
erty will be numpy.random)
NameValuePair pairName name that identifies the value xsd:string
pairValue value that is associated with the name rdfs:Literal

Table 1: Properties of the classes defined by the Alpaca ontology. The prefix xsd: identifies the namespace of the XML Schema
and rdfs: the namespace of the RDF Schema. Values without a namespace indicated by a prefix are classes defined in the Alpaca

ontology.
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Figure 9: Example of the serialization of a single function execution with the Alpaca ontology. Top: Information captured
during the execution of a function (welch_psd) taking a Neo AnalogSignal as data input and returning a Quantity array. Bottom:
The Alpaca ontology classes are used to represent the input/output objects and the function execution. The relationships from
PROV-O are used to describe most relationships of the provenance. All elements are associated with the script as an agent.
Object metadata and function parameters are serialized using the extended properties and relations provided by Alpaca (an
example for a function parameter is shown in red using hasParameter, and for an object attribute in green using hasAttribute).
In the diagram, the grey circles represent blank nodes of the NameValuePair class. Some additional properties captured and
serialized during the function execution were omitted in the diagram here for clarity. prov: is the PROV-O namespace. Whenever
a namespace is not defined, the class or property belongs to the Alpaca ontology.
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A.

Alpaca ontology class

Identifier

DataObjectEntity
FileEntity
FunctionExecution
Function

urn:[authority]:alpaca:object:Python:[class name]:[object hash]
urn:[authorityl:alpaca:file:[hash typel:[file hash]
urn:[authorityl:alpaca:function_execution:Python:[script file hash]:[session ID]:[function name]#[execution ID]
urn:[authorityl:alpaca:function:Python:[function name]
1:

ScriptAgent urn:[authority]:alpaca:script:Python:[script file name]:[script file hash]#[session ID]

B.

Identifier element Description

authority string defining the authority associated with the records

class name name of the object class in Python, with full module path from the source package where it is implemented
object hash content hash of the Python object

hash type method to hash the file (currently only SHA256 is supported)

file hash hash value of the file

script file hash SHA256 hash of the Python file containing the script source code

session ID UUID generated when activating Alpaca tracking (session ID)

function name
execution ID
script file name

name of the function, with full module path from the source package
UUID generated during the execution of the function (execution ID)
name of the file containing the source code

Table 2: Composition of URN identifiers for each element described in the Alpaca provenance records. A. General schema
for the composition of the identifier associated with each class in the ontology. B. Details of identifier parts mentioned between

brackets in A.

2.3.4 Visualization of the serialized provenance

The provenance records serialized to RDF files can be loaded as NetworkX'> (Hagberg et al., 2008)
graph objects. Besides the functionality for graph analysis offered by NetworkX, the graph objects
can be saved as GEXF'® or GraphML'” files that can be visualized by available graph visualization
tools, e.g., Gephi'® (Bastian et al., 2009), or other Python-based frameworks, e.g., Pyvis'® (Perrone
etal., 2020). This takes the advantage of existing free and open source solutions developed specif-
ically for analyzing and interacting with graphs.

In Alpaca, the ProvenanceGraph class is responsible for generating the NetworkX graph ob-
jects from serialized provenance data. Fig. 10 summarizes how the visualization graph is obtained
from the RDF graph. The resulting graph will have entities (DataObjectEntity or FileEntity) and
activities (FunctionExecution) as nodes, identified by the respective URN. Directed edges show
the data flow across the functions. Metadata and function parameters are added to the attributes
dictionary of each node. A few attributes are present for all the nodes in the graph (omitted in
Fig. 10 for clarity):

+ type: describes one of the three possible types of node: object, file, or function;

+ label: for data objects, it is the Python class name (e.g., AnalogSignal). For functions, it is the
function name (e.g., welch_psd). For files, it is File;

+ Python_name: for data objects and functions, it is the full module path to the class or func-

tion, with respect to the package where itis implemented (e.g., neo.core.analogsignal.AnalogSignal.

For files, this attribute is not used;
« Time Interval: a string representing a time interval according to the standard used by Gephi
that is composed from the order of the function execution. This information can be used to

T5RRID:SCR_016864; https://networkx.org
'®Graph Exchange XML Format, https://gexf.net
"7http://graphml.graphdrawing.org
T8RRID:SCR_004293; https://gephi.org
"Ohttps://pyvis.readthedocs.io
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Figure 10: Example of a NetworkX graph generated from the RDF files serialized using the Alpaca ontology. This shows the
expected nodes (two DataObjectEntities and one FunctionExecution) from the example in Fig. 9. Node attributes of DataOb-
jectEntities are included in the provenance trail if they are selected by the user when generating the graph using Alpaca func-
tionality (attributes selected in the context of the use case scenario are shown in bold).

visualize the temporal evolution of the provenance graph, e.g., using the timeline feature of
Gephi that displays only the nodes within a specified execution interval.

The ProvenanceGraph provides options to tweak the visualization. First, it is possible to select
which attributes and annotations from the metadata to include in the visualization graph. Second,
parameter names can be prefixed by the function name, so that they can easily be identified. Third,
nodes representing the builtin Python None object (that is the default return value of a Python func-
tion) can be omitted. Finally, nodes describing a sequence of object access from containers (e.g.,
segment.analogsignals[0], which accesses the list in the analogsignals attribute of segment, followed
by retrieving its first element) can be condensed such that a single edge describing the operation
is generated. These visualization options reduce clutter and facilitate the visual inspection of the
recorded provenance information.

Finally, the provenance graphs can become large when repeated operations are performed
within the script, such as using a for loop to iterate over several data objects to perform compu-
tations. Therefore, an aggregation and summarization is available, adapted from the functionality
already implemented in NetworkX (from version 2.6). It uses the SNAP aggregation algorithm, and
was modified from the original implementation to allow the selection of specific attributes of a set
of nodes. Moreover, for functions executed with distinct set of parameters, the different values
can also be taken into account when identifying similarity of nodes in summarizing the graph. The
aggregation generates supernodes that represent not a single execution and data, but several iden-
tical or similar processing nodes. The identifiers of the individual elements that were aggregated in
the supernode are listed in the members node attribute. The total number of nodes aggregated into
the supernode is stored in the member_count node attribute. In the end, the user can aggregate
several nodes together, depending on whether they share the values of a given attribute, which
allows the generation of a simplified version of the provenance trace that provides a more general
overview of the analysis.

2.4 Code accessibility

The code to reproduce the analyses presented as use case in this paper is freely available on-
line at https://github.com/INM-6/alpaca_use_case. Figures 1, 2, 4-10 were manually created using
Inkscape. Figures 3 and 13A are direct outputs of the corresponding scripts. Figures 11, 12 and 13B
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were created from graph visualization files generated by the corresponding scripts (GEXF format).
The GEXF files were loaded into Gephi (version 0.9.7) and nodes were edited for color, position,
and size. The graphs were exported to SVG files that were manually edited using Inkscape to com-
pose the final figures. Editing involved adjusting label sizes and adding information available as
node attributes in Gephi. The data used for the analysis can be found at https://gin.g-node.org/
INT/multielectrode_grasp.

3 Results

In the following, we will describe and evaluate the analysis provenance captured by Alpaca in the
use case scenario described in Section 2.2. After running psd_by._trial_type.py with the code modi-
fied to use Alpaca, a detailed provenance trace was obtained and stored as R2G_PSD_all_subjects.tt!.
Corresponding GEXF graph files for visualization were generated, with distinct levels of aggregation
and granularity of the steps in psd_by_trial_type.py, ranging from a fine-grained view to a summariz-
ing birds-eye view. The interactive analysis of those graphs using Gephi are presented in the form
of a video (accessible at https://purl.org/alpaca/video). Here, we will present the main features of
the provenance trace using several Gephi graph exports. Then, we detail how they address the
four challenges for tracking provenance of the analysis we identified in the Materials and Methods
and Fig. 1.

3.1 Overview of the captured provenance

Fig. 11A shows the overview of the graph generated from R2G_PSD_all_subjects.ttl (None objects
returned by functions were removed). Overall, 3579 nodes and 4313 edges are present, and the
graph has 8 colored regions. Each region corresponds to the iterations of the two outer loops in
psd_by _trial_type.py (i.e., loop over 2 subjects x loop over 4 trial types resulting in 8 iterations; Fig. 4).
For the remainder of this study, the visualization is optimized to remove memberships due to the
access of Neo objects in containers that introduces extra nodes in the graph. This simplification is
illustrated in Fig. 11B.

Using the timeline feature of Gephi, it is possible to isolate specific parts of the graph (Fig. 11A)
based on the execution order of statements in the Python code. Here, we single out the time
window that corresponds to the processing of a single trial in a loop iteration (Fig. 11C) and then
inspect individual attributes of the objects and parameters of the functions involved until the com-
putation of the PSD. It is possible to inspect the start and end time points of the trial segment with
respect to the recording time in the dataset using the t _start and ¢_stop attributes of the Segment
object at the beginning of the trace, thus uniquely identifying the analyzed data segment. Itis also
possible to review the AnalogSignal object containing the data that was later processed and used
to compute the PSD by the welch_psd function of Elephant. General attributes, such as the shape
of the data array of the AnalogSignal object, can be accessed together with specific metadata, such
as the names of the channels associated with the time series in the data. Finally, for these interme-
diate steps, it is possible to inspect specific parameters passed to each function: the attributes of
FunctionExecution graph nodes (shown example: butter) corresponding to function parameters
are prefixed by the function name, followed by the name of the argument as defined in the Python
function definition (cf., Fig. 10). Taken together, Alpaca captured these types of information for
each individual step throughout the execution of psd_by trial_type.py such that each iteration of
the central analysis can be traced in detail after completion of the script.

Itis possible to retrace the first steps after loading the two data files (Fig. 11D). A function called
load_data (defined in psd_by._trial_type.py) was called with the neural data file (available as a dataset
in the NIX file format) of one particular subject as input and returning a Block object with all the
data of that recording session. We can inspect the subject name annotation of Block and identify
in human readable text which subject corresponds to each object. We can alternatively bind each
Block to the specific source data file, by inspecting the File node associated with each object, and
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Figure 11: Overview of the provenance captured by Alpaca stored in R2G_PSD_all_subjects.ttl. A. Visualization of the full
(non-aggregated) graph corresponding to R2G_PSD_all_subjects.ttl. Each graph region (color coded) corresponds to the processing
for a single subject (monkey N or monkey L) and trial type (PGHF, PGLF, SGHF, or SGLF). B. Sequential object access operations
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the annotations dictionary. C. Processing of an individual trial. Details of data objects and function parameters can be inspected.
Values of selected attributes and annotations are shown below the data node labels. Function nodes are dark red with labels in
italic. Exact parameters for the butter function execution are shown in the table. D. Loading of the NIX data file of each subject
(monkey L: green; monkey N: blue). Function load_data (dark red) loaded each file and returned a Block object (subject name
annotation identifies the corresponding subject). The first Segment of the Block was used for further processing. E. Generation of
R2G_PSD_all_subjects.png from the matplotlib Figure object. In D and E, the path and hash of files can be inspected.
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Figure 12: Alpaca captured the detailed provenance of R2G_PSD_all_subjects.png. Function nodes are labeled in italic and
data objects in normal style. The multipliers next to a node show how many similar nodes were aggregated at that step. Selected
function parameters are shown in the tables. A. The aggregated graph demonstrates common steps in preprocessing the Seg-
ment objects containing data of monkey L (left) and monkey N (right). For each trial type, the Neo function get_events extracted
the times of the CUE-OFF events of correct trials (see properties parameter in the table; dictionary key names are in italic). Each
execution of get_events used distinct belongs_to_trialtype values (color in table matches color in graph). Neo functions add_epoch
and cut_segment_by_epoch were called with same parameters across monkeys/trial types to extract data as Segment objects corre-
sponding to 500 ms after CUE-OFF (dark blue). The number of trials can be inferred from the multipliers of the Segment objects.
The details for the preprocessing of monkey N/SGHF trials are shown (dark grey). B. Analysis steps after cutting data into trials
(aggregated for each monkey/trial type). The values of the shape and units attributes of Quantity objects are shown inside the
node. Function select_channels was executed taking the AnalogSignal with the electrode data for the trial (dark brown; n=135 trials
for monkey L and n=142 trials for monkey N). (continues on next page)
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Figure 12: (continued) For monkey L, channels 2 and 4 (‘chan 2’ and ‘chan 4’ values in the channel_names array annotation) were
removed. All trials (n=277) were processed similarly (red shades), consisting of applying a 250 Hz low-pass Butterworth filter (func-
tion butter), downsampling to 500 Hz, and computing a PSD using the Welch method using a Hanning window with 50% overlap
and 2 Hz frequency resolution (function welch_psd). For each Quantity array with power spectra, an average across channels was
obtained (orange shades) and for each monkey/trial type (n=8) those estimates were combined to obtain an array for that trial
type (pink shades; the shapes of the arrays match the number of trials obtained in the pre-processing). Mean and SEM across
trials were obtained from these arrays (purple shades) and plotted (green shades).

obtain the SHA256 hash (data_hash node attribute). Although the actual path used in the analysis
(File_path node attribute) will point to the actual location of the file in the system where the script
was run, the hash will allow the identification of the file regardless of its name and location. More-
over, the graph shows that the first Segment stored in the Block was accessed (through the segments
attribute of Block), and this was the main source for all subsequent analysis done for each monkey.
By inspecting the node of the Segment object, we have access to its attributes and annotations,
such as the starting and end times of the data in recording time (-0.0021 and 1003.2122 seconds
for subject monkey N, and 0.0 and 709.2480 seconds for monkey L; Fig. 11D).

In a similar way as described above for reading the input data, we can inspect the generation
of the output file (Fig. 11E). It was obtained from a matplotlib Figure object that was initialized by a
function at the beginning of the script execution (create_main_plot_objects), was successively filled
with graphs as power spectra were calculated, and finally saved to disk as a PNG file using a function
called save_plot.

3.2 Understanding the data preprocessing

Fig. 12A shows the sequence of steps applied to the Segment object that contains the full data
for one subject. When aggregated by function parameters (i.e., simplified based on similarity of
function parameters), the graph shows four separate paths that start from each of the two Seg-
ment objects (one per subject). Each is comprised of the Neo functions get event, add_epoch, and
cut_segment_by_epoch. Each of those functions performs a specific action: identify specific events
during the recording (stored in an Event object) according to selection criteria, select a window of
data around these identified event timestamps (stored in an Epoch object), and finally use the win-
dows stored in the Epoch object to cut the large Segment, producing one Segment object per epoch
containing a window.

We can now analyze the captured provenance to verify the detailed parameters used in each of
those preprocessing functions. get_event used a parameter called properties, together with the Seg-
ment object as input. That parameter defines a dictionary with keys and values that are compared
to the annotations or attributes of a Neo Event object in order to select the desired subset of all
events recorded during the experiment. All four paths considered the CUE-OFF event of correct tri-
als (defined by the trial_event_labels="CUE-OFF’ and performance_in_trial_str="correct_trial’ dictionary
entries). However, in each path, the function was called with the belongs_to_trialtype value contain-
ing one of the four possible trial labels: PGHF, PGLF, SGHF, or SGLF. Therefore, each Event object
returned by get_event will contain the times of CUE-OFF of all correct trials of one of the four trial
types.

The times of the generated Event objects were used to define epochs and cut the data to obtain
segments of the trials of a particular type. Inspecting the subsequent executions of the functions
add_epoch and cut_segment_by_epoch, their parameters show that epochs were defined as 500 ms
after the CUE-OFF event (pre=0.0 ms and post=500.0 ms), and the absolute recording times were
preserved when cutting (reset_time=False). Therefore, for each subject, we can partition the prove-
nance graph in four separate paths, each dealing with processing data of a particular trial type (the
outer loops of psd_by trial_type.py; Fig. 2). Not only these selection criteria for extracting the data
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are retained by the provenance trail, but also we can retrieve the precise time points used for cut-
ting the data and calculated only during run-time based on the loaded data on a trial-by-trial basis
(by inspecting the ¢t start and t_stop attributes of each Segment generated by cut segment_by_epoch).
Overall, Alpaca allowed us to understand the initial data preprocessing and trial definitions, ad-
dressing challenges 1 and 2.

3.3 Inspecting the data flow used to generate a result

The figure stored in R2G_PSD_all_subjects.png and shown in Fig. 3 could have been produced by
different versions of psd_by_trial_type.py, with steps in different order or new steps added. A likely
scenario is the necessity to filter out some channels for one of the datasets. In Fig. 12B, we see that
for each subject, a user-defined function called select_channels was applied to the data. For monkey
L, it is apparent from the shapes of the data arrays that 2 recording channels were excluded (due
to signal quality), such that only 94 of the 96 recording channels were used. The provenance track
captured by Alpaca shows this, as the returned AnalogSignal object is different from the object
containing all the channels, and the shape attribute shows the removal of the two channels.

At this point, it is possible to bind R2G_PSD_all_subjects.ttl to R2G_PSD_all_subjects.png through
the SHA256 hash of the file written by the function save_plot (Fig. 11E). R2G_PSD_all_subjects.tt/
will also have all the function executions linked to the script identifier, obtained from the hash
of psd_by_trial_type.py and session ID (cf. Table 2). Thus, it was possible to record all operations
within a single script together with the actual parameters used. In this way, the provenance infor-
mation can be used to automatically capture and retain the ongoing development process from
the perspective of the generated results, addressing challenges 2 and 3.

3.4 Reviewing analysis parameters

In between runs of a single version of psd_by_trial_type.py, the analysis parameters could also have
been changed and leading to alternate versions of the PSD estimates in R2G_PSD_all_subjects.png
generated by each run. Ascenario where this is likely to occur is one where the scientist performing
the analysis may have interactively iterated the code several times to find a set of parameters that
allowed a good visualization of the power spectra.

The provenance track captured by Alpaca allows to inspect the values of each individual func-
tion call. From the AnalogSignal object after channel selection, there is a common pathway in the
aggregated graph for both subjects (Fig. 12B). The functions butter, AnalogSignal.downsample, and
finally welch_psd were called sequentially. Those correspond to the filtering, downsampling, and
computation of the PSD using the Welch method. Each of those functions have key parameters
that will affect the PSD estimate, and the parameters were captured automatically.

We can use the provenance information to verify that a 250 Hz low pass cut-off was used for
the filtering (from the parameter passed to the Elephant butter function). Moreover, we verify that
the signal was downsampled by a factor of 60 (method downsample from the AnalogSignal object).
By inspecting the shapes of the AnalogSignal objects that are input and output of the function, we
can verify the downsample operation: the input object had 15000 samples and, after AnalogSig-
nal.downsample, the number was reduced to 250.

Finally, it is possible to inspect all the parameters for the PSD computation using the Elephant
welch_psd function: a Hanning window was used, for an estimate with a 2 Hz frequency resolu-
tion. The resulting objects storing the frequency bins and power estimates (Quantity arrays) are
discernible by the units attribute. The frequency array has a dimension of 126, which is expected
for a PSD of a continuous signal downsampled to 500 Hz and with a frequency resolution of 2 Hz.
It is also possible to observe that the power estimates are a two-dimensional array with first di-
mensions of 96 (for monkey N) and 94 (for monkey L), which agree with the source AnalogSignal
objects and indicate the number of channels. Therefore, the power estimates were obtained for
each channel as a single array.
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Addressing challenges 1 and 2, it possible to retrieve the value of any parameter that may have
resulted from trial and error iterations during the development of psd_by_trial_type.py, as the prove-
nance information shows the detailed history of the generation of the data objects that were ulti-
mately used by the plotting function.

3.5 Facilitating sharing of analysis results

When sharing R2G_PSD_all_subjects.png with others, some parts of the figure therefore leave guess-
work to the collaborator. However, R2G_PSD_all_subjects.tt/ contains several pieces of information
that are not accessible from the figure stored in R2G_PSD_all_subjects.png alone.

In addition to the details of the analysis steps presented above, it is also possible to know the
last steps used to transform the data before plotting the lines and intervals using the plot_Ifp_psd
function (Fig. 12B). First, an average of the power across all channels was obtained for each trial.
The NumPy mean function was applied to the array with the per-channel power estimates, over the
first axis (axis=0 parameter). Then, the averages of all trials of the same trial type of a single subject
were averaged in a grand mean (using the NumPy mean function). The individual trial averages
were also used to obtain a SEM estimate (using the SciPy sem function). Finally, the grand mean
and SEM were passed to the plot_Ifp_psd function that performed the plotting in the AxesSubplot
object corresponding to the graph panel for that subject, taking the multiplier 1.96 as a parameter
to define the width of the intervals. Not only all these steps are now apparent, butitis also possible
to know how many trials were used for each subject when plotting (monkey N: PGHF=36, PGLF=35,
SGHF=36, or SGLF=35; monkey L: PGHF=33, PGLF=31, SGHF=30, or SGLF=41; Fig. 12A and Fig. 12B).
In addition, for each call of plot_Ifp_psd it is possible to inspect the parameter providing the legend
label with respect to the source of the mean, SEM and frequency data used as inputs.

As mentioned above, two electrode channels were excluded in the analysis of monkey L data.
The provenance information in R2G_PSD_all_subjects.ttl makes it possible to check the channel_names
annotations of each AnalogSignal object used in each iteration when computing the PSD (Fig. 12B).
The inspected labels show that channels 2 and 4 were excluded for this monkey.

An additional scenario to illustrate how to make use of the captured provenance in a shared
environment is presented in Fig. 13A. Here, a plot resembling the one presented in Fig. 3 is stored
in R2G_PSD_all_subjects.png. However, the lines and interval area boundaries appear smoothed,
suggesting the plot was generated by an alternate version of psd_by trial_type.py. The provenance
captured by Alpaca reveals steps after the aggregation of the power estimates across trials. Spline
smoothing objects from the SciPy package were used to generate new arrays that were the in-
puts to the plotting function plot_Ifp_psd (Fig. 13B). With this information, collaborators receiving
R2G_PSD_all_subjects.png can clearly identify that the plot is not showing the actual estimates but a
smoothed version.

In summary, addressing challenge 4, the provenance information captured by Alpaca facilitates
sharing R2G_PSD_all_subjects.png as it provides additional information for finding and understand-
ing the results without requiring extra work by the scientist performing the analysis.

4 Discussion

In this paper, we presented Alpaca, a toolbox to capture fine-grained provenance information
when executing Python code, with a specific focus on scripts that analyze data. The information
is saved as a metadata file that represents a sidecar file to the saved analysis results. Using a
realistic use case analysis of calculating power spectra estimates in a massively parallel electro-
physiology dataset, we showed how this captured provenance metadata helps in understanding
an electrophysiology analysis result that could ultimately be shared among collaborators. With the
help of graph visualizations, it is possible to inspect the data flow across functions together with
other details that were available at run time, such as object attributes and annotations and func-
tion parameters. The toolbox takes advantage of existing standards to represent electrophysiology
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Figure 13: Provenance captured by Alpaca shows transformations of the results before plotting. A. Alternate version of
R2G_PSD_all_subjects.png. The lines appear smoothed in comparison to the plot shown in Fig. 3. B. Provenance track showing
the steps after the computation and aggregation of the PSDs across channels and trials, before plotting with plot_Ifp_psd. The
visualization graph was aggregated to demonstrate the common steps when plotting the different estimates for each subject
and trial type. Nodes in darker shades with labels in italic are function calls and nodes in lighter shades with labels in normal
style are data objects. The steps also present in the generation of the plot in Fig. 3 are highlighted in red (top; some labels
omitted for clarity). The NumPy array (with SEM estimates) and Quantity arrays (with PSDs or frequencies) used in the original
R2G_PSD_all_subjects.png are shown in purple (array shape and physical quantity are shown inside the nodes). In contrast to the
generation of the original plot, an additional function computed the error line values (pink shades). Next, the NumPy arrays with
error estimates or the Quantity arrays with PSD estimates were passed together with the Quantity array with frequencies to the
SciPy function make_interp_spline, which generates a BSpline interpolation object (green shades show the interpolation steps). For
the interpolation using BSpline, an array with 500 elements between 0 and 50 was generated with NumPy linspace function (orange
shades; the function node is highlighted with a black border). The detailed parameters for linspace recorded by Alpaca are shown
in the table. This NumPy array was converted to a Quantity array that was used with the interpolation objects to obtain the final
error and PSD arrays used in the plots (blue nodes).
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data in Python (e.g. Neo) by also capturing relevant object metadata into the provenance records.
In the end, it was possible to obtain detailed information that were not available from the result
file alone. This provided a better context for the interpretation of an analysis result and adds to
the rigor in its reuse.

In the beginning, we introduced four challenges associated with the analysis of electrophysi-
ology datasets that we aimed to consider in designing a toolbox to capture provenance. We then
showed, using our concrete use case, that Alpaca addresses these challenges. First, the customized
data preprocessing routine using functionality of the Neo package was described in the provenance
record with all the relevant parameters. Second, any state of the parameters of the functions called
in the script and the data flow will be automatically recorded together with the results to allow de-
tailed comparisons as the script is developed and adapted over time. Third, in agile, interactive
analysis scenarios changes to the source code or execution order of code blocks leading to differ-
ent result files and different provenance tracks that can be bound to the result files and code by
the file and script identifiers. Finally, Alpaca provided a structured provenance record describing
the history of generation of R2G_PSD_all_subjects.png as an additional file that is suitable for sharing
together with the results. This serialized provenance makes not only information available in the
plot in Fig. 3 (e.g., subject names, units), but also that were not apparent at all (e.g., the annota-
tions employed to select the timestamps of the CUE-OFF events that are the start time of the trial
data used) accessible in a machine-readable format that can be inspected by scientists receiving
the shared analysis results. Overall, the provenance information captured by Alpaca delivers the
information required for understanding an electrophysiology analysis result, facilitating especially
work in collaborative environments.

Trust is a key factor in experimental data analysis, especially in collaborative contexts. Result
artefacts (files, figures, ...) are useful as long as the processes that generated them fit the hypothe-
ses and research questions that guided the analysis in the first place. As provenance information
describes the data and its transformations, it is expected that it should help in building trust in
the analysis of electrophysiology data. The provenance information captured as a metadata file by
Alpaca helps in that direction. With the example presented in this paper, we demonstrated that
the toolbox describes the analysis processes in detail, reducing uncertainty on every step of the
data analysis. Data loading, preprocessing, signal processing, obtaining the actual PSD estimates,
and preparing the data for plotting and ultimately saving the result file were apparent when analyz-
ing the provenance records saved as R2G_PSD_all_subjects.ttl. In addition, the key parameters that
determine each intermediate result are clearly defined. In the end, Alpaca contributes to building
trust in the processing of analyzing data in collaborative environments and sharing results among
peers.

Alpaca might improve the reproducibility of the results when analyzing electrophysiology data.
Considering reproducibility as the ability to reproduce a given analysis result by different individu-
als in different settings, the detailed information provided by Alpaca provides a good description
of the processes involved in the generation of the analysis result even in the absence of the original
script. Although a full re-execution or reconstruction of the source code is neither possible nor the
goal of the tool, still it is possible to know the sequence of functions used, their source packages
and versions, and the relevant parameters in a level of detail that would help in any reimplemen-
tation of the analysis pipeline from scratch. The provided identifiers and hashes would also help
in checking whether the data objects are equivalent between runs, without having to serialize the
full object data at each step. In the end, although the generation of the exact result file will require
the re-execution of the original script, the information summarized by Alpaca already makes any
attempts to reproduce the results using a different code more likely to succeed.

Alpaca also contributes to make the electrophysiology data analysis results more compliant
to the FAIR principles (Wilkinson et al., 2016). These were developed to provide recommendations
and requisites to increase the findability, acessibility, interoperability and reusability of data. While
typically considered in the context of the source data files obtained from an experiment, the prin-
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ciples could be extended to include artefacts such as a result stored in R2G_PSD_all_subjects.png.
Indeed, increasing the FAIRness of such electrophysiology analysis results would bring several ben-
efits. First, if the results are findable, it is easier to navigate among a collection of results such as
hundreds of files in a shared folder. Second, the interoperability would allow for the comparison
of similar results produced by different implementations of a single method (such as the case of
different Python toolboxes providing similar analysis functions, such as the computation of a PSD
using the Welch method that is available in Elephant, SciPy, MNE (Gramfort et al., 2013), and many
others). Finally, the reusability of the results would eliminate the necessity of repeating required
analyses when they were already performed. This could be the case of the use case presented in
this paper, where a collaborator might be interested in using the PSD estimates as a starting point
for further analyses of the same experimental datasets. If the existing R2G_PSD_all_subjects.png
already provided an adequate analysis with respect to the preprocessed trial data, signal process-
ing, parameters of the PSD estimates and aggregation over channels and trials, she could simply
reuse it to make any required inferences before starting her analysis. Alpaca provides advances
mainly with respect to the reusability FAIR principle, as the analysis results are obtained with de-
tailed provenance, and the results are also described with accurate and relevant attributes such
as the annotations present in the Neo data objects. However, Alpaca also improves the interop-
erability and findability of the results. Regarding interoperability, first the provenance informa-
tion is structured in a machine-readable format, using the PROV provenance model that defines
a broadly-used vocabulary for provenance representation. Moreover, the metadata (in the form
of attributes and annotations of the data objects) and function parameters (that can be seen as a
special kind of metadata when considering what is proposed in the FAIR principles) are also struc-
tured in a machine-readable format defined formally in the Alpaca ontology. Finally, the findability
of the results is improved, as Alpaca binds the identifiers of the individual data objects, files, script,
functions and function executions to the analysis outcome, making it queriable via, e.g., the func-
tions used in generating the outcome or by specific parameter settings. In the end, although a
fully FAIR-compliant solution requires the development of additional resources such as controlled
vocabularies and ontologies to represent the electrophysiology data analysis processes, Alpaca al-
ready provided increased adherence of the electrophysiology analysis result to the FAIR principles.

Besides those improvements associated with the machine-readability of the captured prove-
nance, Alpaca also facilitates the access to the provenance of the analysis results by humans. The
visualization graphs generated from the RDF files eliminate the necessity of complicated tools such
as SPARQL queries to extract and interact with the captured provenance. This ability to explore the
provenance graphs and inspect data object attributes and annotations as well as function param-
eters allows the scientist to visually understand the details of each individual data transformation
which facilitates the interpretation and understanding of the analysis result. This is complemented
by the possibility to aggregate similar nodes in the graphs producing summarizations. While these
lose the fine-grained details, they provide a high-level overview that is more descriptive of the anal-
ysis process than any accompanying textual documentation or the script source code. Ultimately,
Alpaca not only records the provenance information for documentation purposes, but it is also a
powerful tool to understand the history of the analysis result.

One design feature of Alpaca is that it does not provide a description of the control flow in the
script. This is apparent from the main structure of the provenance graph of the example presented
inFig. 11A, where each iteration of a for loop appeared as a separate path starting from the function
that generated the objects accessed in the loop. From the implementation perspective, the same
graph would be obtained if the source code was structured in a way that the access of individual
elements was done without a loop (i.e., instead of looping over a container with N elements, insert
N function calls, each using a different element from the container). Therefore, at this point, it
is not possible to use the saved provenance to make inferences about the code. In contrast, the
data-centric approach taken by Alpaca was developed with the aim of exposing the data and its
transformations, and relevant parameters and metadata. Thus, we consider that the resulting
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provenance lacks complexity while making the data flow clear, regardless of the control flow used
to achieve it.

4.1 Comparison with existing tools

There are existing tools that aim to capture and describe provenance during the execution of
scripts, and each tool has distinct technical approaches and aims to accomplish distinct objectives
(see Pimentel et al., 2019 for a review). One approach is to capture provenance during the script
run time, as adopted by Alpaca. In this context, we highlight noWorkflow (Murta et al., 2015), as it
was intended to be used in a similar scenario than Alpaca, i.e., the execution of standalone Python
scripts that analyze data and produce output files. However, in contrast to Alpaca, noWorkflow does
not require code instrumentation, but relies on a custom command line tool to run the script. The
noWorkflow tool performs an a priori analysis of the code together with tracing during the script
execution to provide a very in-depth description of the sequence of functions called and to gener-
ate a detailed call graph as provenance information. All the information is captured and saved in
a local database. The focus of noWorkflow is storing and describing repeated runs of the code (tri-
als), highlighting the differences and evolution across trials. Although noWorkflow provides a very
detailed description of the analysis process at the level of every function call (which is not possible
for Alpaca as it tracks only the functions identified by the decorator), it falls short for some aspects
introduced by Alpaca. First, we decided to save provenance using a data model derived from PROV,
which increases interoperability, while noWorkflow currently relies on a custom relational database
to structure the information on the function executions. Moreover, Alpaca aims to provide an ex-
tended description of the data objects across the script execution, which was implemented in the
ontology used in the RDF serialization. Together with the description of the sequence of functions
executed, this additional information is relevant for the understanding of the analysis result, espe-
cially regarding metadata provided as annotations. An example in the presented use case is the
identification of the data pertaining to the individual trial types. noWorkflow would have shown
the loops and sequence of Neo functions used to cut the data into the smaller trial segments, but
the annotations identifying each Event object used for the preprocessing using those functions
would not be accessible. In the end, this relevant information is accessible from the provenance
records provided by Alpaca. Overall, Alpaca captures provenance with a different perspective on
the analysis process, that is more relevant for the particularities of electrophysiology data analysis
as introduced at the beginning of this paper.

AiiDA (Pizzi et al., 2016) is another tool that can be used to capture provenance in data anal-
ysis workflows implemented in Python. It was developed as a complete solution for the automa-
tion, management, persistence, sharing and reproducibility of complex workflows. With respect
to data provenance, AiiDA tracks and records the inputs, outputs, and metadata of computations
and produces a complete provenance graph. The technical approach is similar to Alpaca since it
also uses decorators to instrument the code. However, AiiDA has other design features: (i) it saves
provenance in a centralized storage; (ii) as part of the provenance tracking, any data object can be
saved to the database with a unique identifier, allowing its retrieval later for reuse together with
the lineage. In the end, AiiDA is a more holistic tool for reproducibility than Alpaca, as it is possi-
ble to re-execute the analysis using the same data objects previously stored. However, we also
identify limitations in comparison to Alpaca. First, AiiDA requires any existing data objects (such
as the ones provided by the Neo framework) to be wrapped by custom objects so that the system
can identify and serialize their content to the database, which can be achieved through a plugin
system. This means that the user must implement this interface for any and every specific data
object in a custom framework. Not only this requires a considerable amount of effort but this may
also introduces a level of maintenance complexity as the data framework evolves and the user
needs to ensure that the wrappers retain compatibility in the future. With the approach taken by
Alpaca, we tried to keep the original Python objects without any fundamental transformation in
their structure, and therefore we focused on identifying them using the URNs so that the lineage
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graph can be constructed, together with the description of their relevant metadata. An additional
limitation of AiiDA is the overall setup of the system to obtain the provenance information. In the
approach taken by Alpaca, the provenance information is saved locally as RDF in an additional file
that should accompany the actual results produced by the script, using the interoperable PROV
data model. On one hand, one may argue that this is annoying as any sharing requires the user
to also share the provenance metadata file together, which is less convenient than just querying
a database using a command line tool such as the one provided by AiiDA. On the other hand, this
adds simplicity to use the tool as no special services are required to be set up at the user system.
It is important to note that, at this point, the individual RDF files produced by Alpaca could also
be stored into a centralized RDF triple store system (either locally or remote) in order to provide
similar functionality, if desired. Finally, a third limitation is the use of a non-interoperable standard
for description of provenance, as the provenance graphs by AiiDA rely on a custom description of
the data and control flows, and obtaining the provenance graphs requires the user to query the
information using the specific AiiDA APl as opposed as using a standard such as SPARQL. In the
end, in comparison to AiiDA, Alpaca has a reduced entry barrier to implement provenance tracking
into existing scripts, which may be relevant for the average electrophysiology lab to start benefiting
from provenance capture during the analysis of their experimental data. It is likely that each of the
two tools focus on the needs brought by different application scenarios, such as a small lab versus
a large research institute. For the small lab, improvements in collaborative work in the analysis of
electrophysiology data by capturing more detailed provenance might be quickly achieved by using
a tool like Alpaca.

Recently, CAESAR (CollAborative Environment for Scientific Analysis with Reproducibility) was
proposed as a solution for the end-to-end description of provenance in scientific experiments
(Samuel and Konig-Ries, 2022b). The overarching goal of CAESAR is to capture, query and visu-
alize the complete path of a scientific experiment, from the design to the results, while providing
interoperability. This was achieved by the implementation of the REPRODUCE-ME model for prove-
nance (Samuel and Konig-Ries, 2022a), based on existing ontologies such as PROV-O (Belhajjame
etal., 2013b) and P-Plan (Garijo and Gil, 2012). A solution called ProvBook is also provided in order
to support reproducibility and to describe the provenance of the analysis part of the experiment
implemented as Jupyter notebooks. Alpaca shares similar concepts with CAESAR, as we extended
PROV-O to obtain an interoperable description of provenance. However, the provenance informa-
tion provided by Alpaca is more detailed with respect to the analysis part, which is the main goal
of the tool. While CAESAR/ProvBook provides overall descriptions of changes in the source code of
Jupyter notebook cells (and the associated results produced by those changes), the details of the
functions called inside each cell are not described with the same level of detail as Alpaca. Moreover,
although CAESAR supports the capture and interoperable serialization of metadata throughout the
experiment, Alpaca structures metadata for data objects throughout the code execution during the
analysis (e.g., the annotations and attributes of Neo objects), which provides a more fine-grained
description of the data evolution (e.g., the removal of the two channels from the data from mon-
key L in the use case example). In the end, CAESAR is a useful tool to capture overall aspects of
provenance during the execution of an analysis in the context of an electrophysiology experiment.
However, the additional level of detail provided by Alpaca is complementary and could be used to
provide additional levels to the provenance, while retaining interoperability.

The fairworkflows library aims to make workflows implemented within Jupyter notebooks more
compliant with the FAIR principles (Richardson et al., 2021). The library uses decorators to add se-
mantic information to the Python code. After their execution, fairworkflows constructs RDF graphs
describing the workflows using P-Plan (Garijo and Gil, 2012) and other ontologies defined by the
user in the annotations (Celebi et al., 2020). This is linked to the provenance information that is
captured during the execution and structured using PROV-O and can be published in the form of
nanopublications (Kuhn et al., 2016). The use of decorators to instrument the functions is similar to
Alpaca, and the decorators of fairworkflows might be used within scripts such as psd_by_trial_type.py.

Kohler et al. 2023 | Facilitating sharing analysis results through in-depth provenance arXiv. | 320f38



However, while Alpaca makes a distinction between inputs, outputs and parameters (from the argu-
ments that a Python function can take and its return values), fairworkflows makes a direct mapping
of arguments as inputs and function returns as outputs. Therefore, the semantic model for prove-
nance in Alpaca emphasizes the identification of the parameters relevant to control the execution
of particular functions. For example, in the computation of the PSD using welch_psd, fairworkflows
would consider the 2 Hz value an input to the function, when Alpaca records it as the special prop-
erty hasParameter. This is particularly relevant when querying the information using SPARQL, for
instance. Moreover, Alpaca also captures and describes detailed information about the objects,
which we showed to be relevant for the correct interpretation of the results. However, the ex-
tra information from the semantic annotations in fairworkflows could be combined with Alpaca to
provide more descriptive provenance and published using the nanopublication engine.

Computational models are frequently used together with electrophysiology experiments to
understand brain function and dynamics. Several state-of-the art simulation engines (e.g., NEST,
Gewaltig and Diesmann, 2007; NEURON, Hines and Carnevale, 1997; Brian, Goodman and Brette,
2008) are available, and many are implemented in Python or provide high-level Python interfaces
where neuronal models with different complexities and biological details can be easily constructed
using Python scripts (e.g., by using an interface such as PyNN; Davison et al., 2009). In this context,
Alpaca might be useful to track the sequence of functions and respective parameters used to in-
stantiate the models in the simulator and run the simulations. This could be used as a complement
to tools such as Sumatra (Davison et al., 2014), that functions as an electronic lab notebook for sim-
ulations, capturing coarse level provenance when executing simulation scripts. Another example
is for a tool such as beNNch (Albers et al., 2022), that implements a modular workflow for perfor-
mance benchmarking of neuronal network simulations and could profit from a more fine-grained
capture of details in the model and configuration step. Therefore, there is the possibility of also
using Alpaca outside of experimental scenarios.

A useful tool for electrophysiology data analysis pipelines is a WMS such as Snakemake (Koster
and Rahmann, 2012). A particularity of Snakemake as a WMS is that it orchestrates the execution
of different steps that can take the form of custom Python scripts, instead of modular and specific
workflow elements such as the ones provided by a WMS such as LONI Pipeline (MacKenzie-Graham
etal.,, 2008). This is attractive when working with electrophysiology data as different aspects of the
analysis process (as mentioned in Section 1) can be considered yet providing modular and reusable
elements (Gutzen et al., 2022). The Snakemake WMS is based on binding input and output files as
dependencies to each script executed in sequence. Therefore, one could envision a scenario where
a script such as psd_by_trial_type.py would have all parameters passed by command line and the
execution was controlled by Snakemake. In this scenario, Snakemake would describe the NIX files
and the R2G_PSD_all_subjects.png output as inputs and output of psd_by trial_type.py, respectively,
together with the description of the command line parameters. However, this would still rely on
the correct mapping of all command line parameters to the actual Python functions (such as the
filter cutoff in butter or frequency resolution in welch_psd). Any parameters potentially hard coded
directly into the function calls would not be captured and would result in a wrong or incomplete
description of provenance. In contrast, all function-level parameters are tracked automatically
with Alpaca. Finally, the provenance description of a Snakemake execution in the form of directed
acyclic graphs is currently stored in a non-interoperable format. Therefore, it is likely that Alpaca
can be a complementary solution to use with Snakemake in more complex analysis scenarios, such
as the ones that requires multiple scripts for modularity. However, the provenance description
would be enhanced: while the provenance at the file/script level would be provided by Snakemake,
the additional metadata file produced by Alpaca would provide a more fine-grained level of detail
regarding each step of the workflow, while adding interoperability.
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4.2 Limitations
The initial implementation of Alpaca described in this manuscript has some limitations with respect
to the scope of the captured provenance. Here, we describe these and suggest remedies.

First, Alpaca is not capturing and saving information regarding the execution environment such
as Python interpreter information, packages installed, operating system, and hardware details.
However, there are existing tools that can be used for that purpose and that could be used to
run a script instrumented with Alpaca (e.g., Sumatra; Davison et al., 2014). Moreover, Alpaca could
be integrated with such tools to use the information provided by them in the saved provenance
records. In the end, we focused on adding granularity instead of reimplementing functionality of
existing tools, as this information is more relevant for understanding and sharing the electrophys-
iology analysis result.

Second, the Alpaca ontology is currently not structured to allow the description of the execution
environment. It could be further expanded to include any information regarding the environment,
as one could envision a revised Alpaca provenance model and ontology with a PROV Agent subclass
that would be related to ScriptAgent, and whose properties would describe the relevant aspects
of the environment. Moreover, the description could be further improved by integration with other
ontologies developed specifically for the detailed description of experimental workflows, such as
P-Plan (Garijo and Gil, 2012) and REPRODUCE-ME (Samuel and Konig-Ries, 2022a). Therefore, al-
though not present in this initial implementation, the approach adopted allows easy expansion
and integration of additional features.

Third, some steps are visible from the data flow perspective but they are not fully descriptive
and understandable at this point. One example are user-defined functions, such as plot_Ifp_psd
in psd_by_trial_type.py. As a plotting function, the user might be interested in knowing additional
details on how the inputs (i.e., the matplotlib AxesSubplot object and the arrays with the data) were
handled. The current implementation tracks code in a single scope, and therefore the execution of
a function such as plot_Ifp_psd is treated as a "black box". It would be interesting to also capture the
execution of some functions with an even finer description of the operations inside those functions.
This could be achieved by expanding the functionality to automatically include functions in levels
lower than the primary capture scope. However, even in the current implementation of Alpaca,
although such fine descriptions from inside of plot_Ifp_psd are not available, the provenance stored
in the generated metadata file already points to where the function was implemented. In this way,
the user can focus on inspecting the implementation of the function plot_Ifp_psd and does not have
to check the full source code.

Finally, only a generic visualization graph is currently provided in Alpaca. Although we took the
approach to leverage the advantage of open-source graph visualization tools such as Gephi, the
visualization of the captured provenance is not optimized (e.g., showing only parameters of the
selected function or object). It is important to note that this can be incorporated as additional fea-
ture in Alpaca without any changes to the captured information or serialization as RDF, by using
existing graph visualization frameworks such as Pyvis to build a customized visualization environ-
ment based on the information in the RDF graphs. Finally, there are existing tools that specifically
deal with the visualization of provenance graphs. One example is AVOCADO (Stitz et al., 2016), im-
plemented to be an interactive provenance graph visualization tool that exploits the topological
structure of the graph to provide a visual aggregation. Although Alpaca provides basic aggregation
using functionality adapted from NetworkX, we could also leverage a tool like AVOCADO to provide
visualization functionality more tailored to the features of a provenance graph, such as hierarchical
structure (e.g., all the steps in a single trial-processing loop grouped in a single node) and temporal
evolution (isolating the visualization of the analyses performed in the first or the second dataset).
However, the technical challenges of such integration are unknown at this point.
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4.3 Future directions

Several improvements are planned for Alpaca in the future. First, we plan to expand the toolbox to
also capture provenance for analyses implemented using Jupyter notebooks. Not only is Jupyter ex-
tensively used for exploratory data analysis, but also the repeated execution of code cells and sub-
sequent substitution of data objects in memory requires detailed provenance tracking for reliable
description of any analysis result produced by a notebook. Second, the provenance records lack
semantic information that are relevant for understanding electrophysiology data and metadata.
Therefore, a further improvement is to allow the inclusion of classes and vocabularies defined in
domain-specific ontologies in the provenance records, which will bring further improvements to
the FAIRness of electrophysiology analysis results. As discussed above, the functionality will also
be improved to capture information about the execution environment, together with information
from version control systems such as git, to provide more detailed information about the source
code that originated the analysis result. Finally, we aim to further improve the interaction and anal-
ysis of the captured provenance by developing a custom visualization and search interface based
on the serialized RDF graphs.

4.4 Conclusions

We implemented Alpaca, a toolbox for lightweight provenance capture during the execution of
Python scripts used for the analysis of electrophysiology data. Alpaca captures more detailed infor-
mation about the analysis processes, including not only the lineage of the data but also embedded
metadata relevant for the description of data objects during the processing pipeline. In the end,
this makes the electrophysiology analysis result artefacts more compliant to the FAIR principles.
This may improve research reproducibility and the trust in the results, especially in collaborative
environments. Therefore, Alpaca may be a valuable tool to facilitate sharing electrophysiology data
analysis results.
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Supplementary Text

1 Changes to the code necessary to track provenance using Al-
paca

The script psd_by_trial_type.py was modified to:

e apply the decorator to functions imported from other modules or to methods inside classes defined
in other modules;

e apply the decorator to user-defined functions in the script (i.e., using the Python def keyword);
e activate provenance tracking at the beginning of the main function;
e serialize the provenance trace as a Turtle file at the end of the main function.

This output is produced by running g¢it diff —no-index ./code/no_provenance/psd_by_trial_type.py
./code/provenance/psd_by_trial_type.py, which are the versions of psd_by_trial_type.py without and with
Alpaca provenance tracking, respectively. These scripts are available at the accompanying archive of this

paper.

diff --git a/./code/no_provenance/psd_by_trial_type.py b/./code/provenance/psd_by_trial_type.py
index 6bc7f5d..f45e70e 100644
--- a/./code/no_provenance/psd_by_trial_type.py
+++ b/./code/provenance/psd_by_trial_type.py
@0 -17,12 +17,37 @@ import matplotlib.pyplot as plt
from numpy import mean
from scipy.stats import sem

+from alpaca import Provenance, activate, save_provenance, alpaca_setting
+from alpaca.utils.files import get_file_name

+

+

+# Apply the decorator to the functions used

+

+butter = Provenance(inputs=[’signal’]) (butter)

+

+welch_psd = Provenance (inputs=[’signal’]) (welch_psd)

+

+add_epoch = Provenance(inputs=[’segment’, ’eventl’, ’event2’]) (add_epoch)
+

+get_events = Provenance(inputs=[’container’],

+ container_output=True) (get_events)

+

+cut_segment_by_epoch = Provenance(inputs=[’seg’, ’epoch’],

+ container_output=True) (cut_segment_by_epoch)
+

+mean = Provenance(inputs=[’a’]) (mean)
+

+sem = Provenance(inputs=[’a’]) (sem)
+

+neo.AnalogSignal.downsample = Provenance(inputs=[’self’]) (neo.AnalogSignal.downsample)



# Setup logging
logging.basicConfig(level=logging.INFO,
format="[%(asctime)s] %(name)s %(levelname)s: %(message)s")

+@Provenance (inputs=[], file_input=[’file_name’])
def load_data(file_name):

Reads all blocks in the NIX data file ‘file_name®.
@@ -33,6 +58,7 @@ def load_data(file_name):

return block

+@Provenance (inputs=[])
def create_main_plot_objects(n_subjects, title):

Creates the plotting grid and figure/axes, with proper distribution and
@@ -62,6 +88,7 Q@@ def create_main_plot_objects(n_subjects, title):

return fig, axes

+@Provenance (inputs=[’signal’])
def select_channels(signal, skip_channels):

nnn

Selects all the channels from the AnalogSignal ‘signal‘ that are not
@@ -75,6 +102,7 @@ def select_channels(signal, skip_channels):

return signal[:, mask]

+@Provenance (inputs=[’axes’, ’freqs’, ’psds’, ’sem’])
def plot_lfp_psd(axes, freqs, psds, sem, label, sem_multiplier=1.96,
freq_range=None, **kwargs):
nnn
@@ -99,6 +127,7 @@ def plot_lfp_psd(axes, freqs, psds, sem, label, sem_multiplier=1.96,
return axes

+@Provenance (inputs=[’axes’, ’title’])

def set_title(axes, title):
nmnn
Set the title of the plot in ‘axes®.

@0 -108,6 +137,7 @@ def set_title(axes, title):
axes.set_title(title)

+@Provenance (inputs=[’fig’], file_output=[’file_name’])

def save_plot(fig, file_name, **kwargs):
nnn
Save the plot in ‘fig‘ to the file ‘file_name®.

@@ -115,6 +145,7 @@ def save_plot(fig, file_name, **kwargs):
fig.savefig(file_name, **kwargs)

+@Provenance (inputs=[’arrays’])

def vstack_quantities(*arrays):
nnn



Performs stacking of Quantity arrays, as ordinary ‘np.vstack‘ removes
@@ -144,6 +175,14 @@ def vstack_quantities(*arrays):

def main(session_files, output_dir, skip_channels):
# Use builtin hash for matplotlib objects
alpaca_setting(’use_builtin_hash_for_module’, [’matplotlib’])

alpaca_setting(’authority’, "fz-juelich.de")

# Activate provenance tracking
activate()

+ o+ + + 4+ o+ o+

logging.info(f"Processing files: ’,’.join(session_files)")

# Labels of the different trial types in the data, and the colors
@0 -236,6 +275,11 @@ def main(session_files, output_dir, skip_channels):

logging.info(f"Saving output to out_file")

save_plot(fig, out_file, format=’png’, dpi=300)

# Save provenance information as Turtle file

prov_file_format = "ttl"

prov_file = get_file_name(out_file, extension=prov_file_format)
save_provenance(prov_file, file_format=prov_file_format)

+ o+ 4+ + o+

if __name__ == "__main__":

parser = argparse.ArgumentParser ()



