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A B S T R A C T   

Obesity has a profound impact on metabolic health thereby adversely affecting brain structure and function. 
However, the majority of previous studies used a single structural index to investigate the link between brain 
structure and body mass index (BMI), which hinders our understanding of structural covariance between regions 
in obesity. This study aimed to examine the relationship between macroscale cortical organization and BMI using 
novel morphometric similarity networks (MSNs). The individual MSNs were first constructed from individual 
eight multimodal cortical morphometric features between brain regions. Then the relationship between BMI and 
MSNs within the discovery sample of 434 participants was assessed. The key findings were further validated in an 
independent sample of 192 participants. We observed that the lateral non-reward orbitofrontal cortex (lOFC) 
exhibited decoupling (i.e., reduction in integration) in obesity, which was mainly manifested by its decoupling 
with the cognitive systems (i.e., DMN and FPN) while the medial reward orbitofrontal cortex (mOFC) showed de- 
differentiation (i.e., decrease in distinctiveness) in obesity, which was mainly represented by its de- 
differentiation with the cognitive and attention systems (i.e., DMN and VAN). Additionally, the lOFC showed 
de-differentiation with the visual system in obesity, while the mOFC showed decoupling with the visual system 
and hyper-coupling with the sensory-motor system in obesity. As an important first step in revealing the role of 
underlying structural covariance in body mass variability, the present study presents a novel mechanism that 
underlies the reward-control interaction imbalance in obesity, thus can inform future weight-management 
approaches.   

1. Introduction 

According to the World Health Organization (2024), the global 
population of adults who were overweight totaled more than 2.5 billion. 
Of this group, over 890 million were categorized as obese. A growing 
obesity epidemic poses a grave threat to public health. Obesity has been 
found to be closely linked to chronic conditions such as type 2 diabetes, 
hyperlipidemia, high blood pressure, cardiovascular disease, and cancer 
(Kivimäki et al., 2022). Indeed, obesity results in 2.8 million premature 
deaths worldwide annually. Yet, treatments rarely result in lasting 

weight loss and virtually all obesity prevention programs have not 
reduced future obesity onset (Plotnikoff et al., 2015; Stice et al., 2006). 
Understanding the neurobiology associated with obesity is crucial as it 
can unveil the underlying brain mechanisms that drive overeating and 
weight gain, offering precise targets for intervention. By identifying 
these neural correlates, we can develop more effective treatments and 
preventive strategies that are tailored to modify specific neural path-
ways, leading to more successful long-term outcomes in managing 
obesity. Despite significant efforts, neural correlates of obesity are not 
yet sufficiently defined, which hinders our understanding of 
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neurobiology associated with obesity (Stice and Burger, 2019; Stice and 
Yokum, 2016) and further limits the development of new effective 
intervention. 

Empirically, neurostructural alterations have been demonstrated in 
individuals with obesity and individual variations of body mass index 
(BMI) in non-clinical conditions, including abnormalities in gray matter 
volume (Hamer and Batty, 2019; Herrmann et al., 2019; Opel et al., 
2017), white matter microstructure (Daoust et al., 2021; Okudzhava 
et al., 2022), cortical thickness (Laurent et al., 2020; Ronan et al., 2020), 
and deformations in subcortical shape (Kim et al., 2020). These findings 
suggest a particular important role of neurobiological alterations 
involved in executive functioning and reward processing (phenotypes) 
in overweight and obesity (for reviews, see Li et al. 2023, Lowe et al. 
2020, 2019, Stice and Burger 2019). This is further supported by find-
ings from resting-state fMRI studies, which suggest that problematic 
eating behaviors in obesity are associated with disrupted communica-
tion between reward, inhibitory, and homeostatic systems (Parsons 
et al., 2022; Syan et al., 2021). 

Based on the various strands of evidence from the obesity literature, 
it is evident that the orbitofrontal cortex (OFC) plays a pivotal role in 
obesity-related brain alterations (Rolls, 2023; Seabrook and Borgland, 
2020; Stice and Burger, 2019; Syan et al., 2021). Several meta-analyses 
have consistently reported that individuals with obesity exhibit a 
reduction in the volume of the orbitofrontal cortex (OFC), marking it as 
a notable structural brain abnormality in this population (Chen et al., 
2020; García-García et al., 2019; Zapparoli et al., 2022). The OFC is 
crucial in representing the reward value and subjective pleasantness of 
food-related sensory experiences such as taste, smell, sight, and touch in 
primates, including humans (Rolls, 2023). Meta-analytical evidence 
indicates that obese individuals demonstrate increased activity in the 
orbitofrontal cortex (OFC) and ventral striatum, brain regions involved 
in taste and reward processing, in response to food-related stimuli 
(Devoto et al., 2018). Furthermore, recent research indicates that even 
in a resting state, without direct food-related cues, there is a link be-
tween an individual’s food preferences (which are likely to influence 
body mass index) and the functional connectivity between the OFC and 
the ventromedial prefrontal cortex (Rolls et al., 2023b). This finding 
suggests that variations in the reward systems of the orbitofrontal cortex 
may contribute to personal differences in how food is perceived as 
pleasant and in the propensity for obesity (Rolls, 2023; Seabrook and 
Borgland, 2020). 

However, previous structural studies often focused on single struc-
tural index, which does not allow for detection of alterations in struc-
tural covariance between brain regions in obesity. Structural covariance 
characterizes how morphologic properties of brain regions are related to 
one another across individuals, which represent a reliable way to 
construct the macroscale cortical structural organization. It has been 
posited that the topology of structural covariance provides an important 
source of constraint for the organization of human cognition (Han et al., 
2023b; Valk et al., 2020). However, traditional structural covariance 
networks often produce group-level networks that reflect 
population-level covariance in neuroanatomy. This approach limits the 
capability to identify and quantify system-level abnormalities at the 
individual level. Additionally, accurately estimating long-distance con-
nections remains a challenge for diffusion-weighted imaging (DTI)--
based tractography. This limitation stems from the inherent difficulty in 
tracking the complex pathways of white matter fibers over extended 
distances in the brain (Zhang et al., 2021b). 

In a significant advancement towards understanding the large-scale 
organization of the cortex, Seidlitz et al. (2018) introduced an innova-
tive approach for constructing an individual-based morphometric sim-
ilarity matrix. This method leverages a variety of morphometric features 
across different modalities to characterize the structural covariance 
between brain regions. Unlike previous techniques that relied on the 
inter-regional correlation of a single MRI feature across subjects, this 
methodology estimates "connections" – essentially, structural 

similarities – by using newly introduced feature vectors. These vectors 
are created by calculating the Pearson correlation coefficient across 
concatenated morphometric features, offering a more nuanced view of 
brain structure than methods focusing on one or two anatomical fea-
tures. Brain regions in which the feature vectors correlate when 
measured across a large set of individuals are said to have “high con-
nectivity”, though in fact this represents high covariation of structure (Li 
et al., 2017). Such combined analysis of multiple indices has been found 
to be more effective than that of a single morphometric index at each 
region (Glasser and Van Essen, 2011; Michel et al., 2024; Sabuncu et al., 
2016; Seidlitz et al., 2018; Vandekar et al., 2016; Whitaker et al., 2016). 
Meanwhile, this method of constructing individual-based morphometric 
similarity networks (MSNs) has successfully improved the accuracy of 
discriminant analysis (Yu et al., 2018). 

To the best of our knowledge, the MSNs have been used to charac-
terize morphometric similarity changing patterns in major depressive 
disorder (Li et al., 2021), schizophrenia (Morgan et al., 2019), and 
Alzheimer’s disease (Zhang et al., 2021b), as well as to predict brain age 
(Galdi et al., 2020) and variance in IQ (Seidlitz et al., 2018), and indi-
vidual differences in inhibitory control (He et al., 2020). Although MSN 
is a reliable and robust method for capturing the greater spatial 
congruence with cortical cytoarchitecture than networks derived from 
diffusion imaging or those based on a singular structural metric, such as 
cortical thickness (Seidlitz et al., 2018), this technique has yet to be 
usedto uncover morphometric covariance associated with obesity in 
adulthood. Previous studies have confirmed the aberrant functionality 
of the brain networks/circuits underlying obesity (for reviews, see Li 
et al. 2023, Schlögl et al. 2016). Given that structural connectivity and 
functional connectivity seem to show positive correlations, in those re-
gions of the brain that are highly structurally interconnected tend to 
exhibit strong patterns of functional connectivity (for a review, see 
Uddin 2013), we speculate that neuroanatomical features measured by 
MSNs will be linked with body mass variability. 

The aim of this work, therefore, was to examine the potential asso-
ciation between individualized MSNs and obesity from a multi- 
morphometric perspective. We first modeled inter-regional correla-
tions of multiple macro- and micro-structural multi-contrast MRI vari-
ables (here, neuroanatomical features were measured by individual- 
based MSNs constructed from cortical characteristic indexes between 
the brain regions) in a single individual within a discovery dataset (HCP 
cohort, n = 434 unrelated participants). We then examined whether BMI 
(i.e., a simple and common index of weight-for-height that reflects 
overweight and obesity) is related to individual brain structure simi-
larity patterns. Additionally, we tested the replicability of the BMI- 
related MSN variations in an independent validation dataset (AOMIC 
cohort, n = 192) by performing a category strategy (96 obese vs. 96 
normal weight). Given the converging lines of evidence highlighting a 
crucial role of OFC circuit in obesity, as mentioned above, we hypoth-
esized that variations in BMI among individuals would be associated 
with changes in the morphometric similarity of the orbitofrontal cortex 
(OFC). This hypothesis is grounded in the understanding that the OFC’s 
structural and functional characteristics are closely linked to the neural 
mechanisms underlying food reward processing and preference, which 
in turn, may influence obesity risk. As mentioned earlier, previous 
structural studies on obesity have typically concentrated on single 
structural indices, which limited our ability to discern changes in 
structural covariance between brain regions. In contrast, our current 
study employs the innovative approach of using MSNs to detect alter-
ations in the structural covariance among brain regions associated with 
obesity. This approach would offer new insights into the neuroana-
tomical basis of obesity, enriching our understanding beyond what was 
possible with traditional methods. Such advancements may contribute 
to the development of targeted psychological and clinical interventions 
to promote weight loss. 
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2. Methods 

2.1. Participants and multi-neuroimaging data acquisition 

2.1.1. Discovery sample: human connectome project (HCP) dataset 
Participants included in this study were selected from the 1200 

Subjects Release (S1200) dataset of the HCP (Van Essen et al., 2013). For 
HCP dataset, the core group of participants is sourced from healthy 
young (aged 22–35) individuals born in Missouri from twin-inclusive 
families, according to information from the Missouri Department of 
Health and Senior Services Bureau of Vital Records. Extra recruitment 
measures were implemented to ensure that the participant demographic 
closely represents the ethnic and racial diversity of the U.S. population, 
as depicted in the 2000 decennial census. The HCP adopts a 
wide-ranging definition of ’healthy’ to establish a participant base that 
is representative of the general population. This strategy is intended to 
capture a broad spectrum of variation among healthy individuals in 
terms of behavioral, ethnic, and socioeconomic factors. Further details 
can be obtained from the HCP1200 data release manual (https://www. 
humanconnectome.org/documentation/S1200/). All procedures 
involving human subjects were approved by the Ethics Committee of the 
local HCP institute. This study was carried out in accordance with the 
Declaration of Helsinki. Written informed consents were obtained from 
all subjects. We excluded data from 78 participants based on the 
exclusion criteria indicated as follows: (1) participants with missing 
T1-weighted structural MRI (sMRI) and diffusion MRI (dMRI) images (n 
= 48); (2) participants with missing values on demographic variables 
such as BMI, age, sex, education, and race (n = 3) or family information 
(family identification number, n = 3); (3) participants with a history of 
hyper/hypothyroidism (n = 4) or history of other endocrine problems (n 
= 16), due to the confounding effects these conditions have on obesity, 
which could confound the results (Reinehr, 2010); and (4) women who 
had recently given birth (n = 4, Gunderson (2009)). 

To this end, we obtained a total of 1035 participants from 434 
families. Considering the BMI is highly heritable (ranging from 0.47 to 
0.90, Elks et al., 2012), we randomly selected one participant from each 
family to eliminate the heritability influence. Finally, 434 participants 
for which multimodal images and BMI were used for the current ana-
lyses were included (females, 234 [53.90 %]; age, 28.85 ± 3.60; BMI, 
26.46 ± 5.24, see Table 1 for details). 

Image data of all subjects from the HCP were scanned on a custom-
ized 3T scanner at Washington University (WashU). The MRI data 
consisted of T1-weighted structural MRI (sMRI) and diffusion MRI 
(dMRI). Images were acquired on a customized 3T Skyra scanner 
(Siemens, Erlangen, Germany) with a standard 32-channel head coil 
(Van Essen et al., 2013). A T1-weighted sMRI was acquired using a 
magnetization-prepared rapid gradient echo (MPRAGE) sequence 
(repetition time (TR) = 2400 ms, echo time (TE) = 2.14 ms, inversion 
time = 1000 ms, flip angle (FA) = 8◦, field of view (FOV) = 224 × 224 
mm2, 0.7 mm3 isotropic resolution). 

Diffusion MRI (dMRI) data were acquired using a Spin-echo EPI 
sequence. A full dMRI session includes six runs, representing three 
different gradient tables, with each table acquired once with right-to-left 
and left to-right phase encoding polarities, respectively. Each gradient 
table includes approximately 90 diffusion weighting directions plus 6 b 
= 0 acquisitions interspersed throughout each run. Diffusion weighting 
consisted of 3 shells of b = 1000, 2000, and 3000 s/mm2 interspersed 
with an approximately equal number of acquisitions on each shell within 
each run (TR = 5520 ms, TE = 89.5 ms, FA = 78◦, FOV = 210 × 180 
mm2, matrix size = 168 × 144 mm2, 1.25 mm3 isotropic resolution). 

All procedures involving human subjects were approved by the 
Ethics Committee of the Southwest University. 

2.1.2. External validation sample: Amsterdam Open MRI Collection 
(AOMIC) 

To test whether the significant association results from the HCP 

sample can be directly validated in obese sample using an independent 
sample, we downloaded Amsterdam Open MRI Collection (AOMIC) to 
use as an external validation dataset. For the AOMIC dataset, subjects 
were recruited through a recruitment firm (Motivaction International B. 
V.) with the aim of creating a sample reflective of the general population 
of the Netherlands in terms of education level (as categorized by the 
Dutch government17), while restricting the age group to 19 to 26 years. 
This narrow age bracket was chosen to reduce the influence of aging on 
brain-related variables. All procedures involving human subjects were 
approved by the Ethics Committee of the local AOMIC institute. This 
study was carried out in accordance with the Declaration of Helsinki. 
Written informed consent forms were obtained from all subjects. From 
AOMIC, we focused on the ID1000 dataset, which is a representative 
young sample of the Dutch population, similar to the HCP sample (Snoek 
et al., 2021). We excluded 24 participants with missing diffusion MRI 
(dMRI) images and demographic variables such as BMI, age, sex, and 
education. Among the remaining 904 participants, we further excluded 
participants with underweight (BMI<18.5) and obtained 574 
normal-weight (18.5≤BMI<24.5) and 96 obese participants (BMI≥30). 
Propensity score matching based on age, sex, and educational level was 
applied to minimize the demographic differences between normal 
weight and obese groups in these aspects to reduce the bias and con-
founding factors from demographics (Stuart and Green, 2008). Optimal 

Table 1 
Demographic information of discovery and validation sample.  

Discovery sample: HCP Validation sample: AOMIC   
Obese 
group 
(Ob) 

Normal 
weight group 
(NW) 

Statistics (Ob 
vs NW) 

N 434 96 96  
Body Mass Index 

(BMI), mean (SD), 
Kg/M2 

26.46 
(5.24) 

33.83 
(3.98) 

21.81(1.59) t = 27.46, p 
< 0.0001 

Age, mean (SD), 
years 

28.85 
(3.60) 

23.24 
(1.59) 

23.23(1.61) t = 0.05, p =
0.964 

Female (Sex), N (%) 234 
(53.92) 

59(61.36) 59(61.36) X2=0, p = 1 

Education, mean 
(SD), years 

14.94 
(1.80) 

Level 1 =
18 
Level 2 =
52 
Level 3 =
26 

Level 1 = 19 
Level 2 = 49 
Level 3 = 28 

X2=0.19, p =
0.91 

Handedness, mean 
(SD) a 

65.47 
(45.27) 

– –  

Total household 
income 

see notes 
for detials 

– –  

Employment status 
(%)  

– –  

not working 61 (14.05)    
part-time 

employment 
77 (17.74)    

full-time 
employment 

296 
(68.21)    

Ethnicity (%)  – –  
Hispanic/Latino 50(11.52) – –  
Not Hispanic/Latino 384 

(88.48) 
– –  

Race N (%)  – –  
White 319 

(73.50) 
– –  

Otherb 115 
(26.50) 

– –  

Notes: Total household income for HCP dataset: <$10,000 (29, 6.68 %),10K- 
19,999 (35, 8.06 %), 20K-29,999 (49, 11.29 %),30K-39,999 (52, 11.98 %), 40K- 
49,999 (44, 10.14 %), 50K-74,999 (103, 23.73 %), 75K-99,999 (55, 12.67 %), 
>=100,000 (67, 15.44 %). aHandedness of participants from -100 to 100 is 
assessed using the Edinburgh Handedness questionnaire. bOther than white, 
including 67 Black or African American, 35 Asian/Nat. Hawaiian/Othr Pacific Is 
and 13 more than one race. Level 1=low; Level 2= medium; Level 3=high. Level 
of education was defined by the Central Bureau van de Statistiek, CBS. 
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matching with probit propensity scores was conducted in the MatchIt 
package Version 4.5.2 (Ho et al., 2011) in R (Version 4.2.1) and resulted 
in a final sample of 96 obese participants and 96 well-matched normal 
weight participants with all P values larger than 0.9. See Table 1 for 
details. 

Image data from AOMIC were acquired on the same Philips 3 T 
scanner-“Intera” version (Philips, Best, the Netherlands). Three high- 
resolution T1-weighted images were acquired using a MPRAGE 
sequence (TR = 8.2 ms, TE = 3.8 ms, FA = 8, FOV = 256 × 256 mm2, 1 
mm3 isotropic resolution). Given the relatively low signal-to-noise ratio 
of diffusion data, three diffusion weighted imaging measurements were 
acquired (TR = 6312 ms, TE = 73.36 ms, FA = 90◦, FOV = 224 × 112 
mm2, 60 transversal slices of 2 mm, 32 directions, b0 = 1000s/mm2). 

All procedures involving analyzing data of human subjects from the 
HCP and AOMIC were approved by the Ethics Committee of the 
Southwest University. 

2.2. Data preprocessing 

For the HCP dataset, structural data preprocessing included three 
pipelines. The first structural pipeline, PreFreeSurfer, aimed to produce 
an undistorted “native” structural volume space for each subject, align 
the T1-weighted and T2-weighted images, perform a B1 (bias field) 
correction, and register the subject’s native structural volume space to 
the Montreal Neurological Institute (MNI) space. The second pipeline, 
FreeSurfer 5.3.0, segmented the volume into predefined structures, 
reconstructed white and pial cortical surfaces, and performed Free-
Surfer’s standard folding-based surface registration to their surface 
atlas. The final structural pipeline, PostFreeSurfer, produced all of the 
NIFTI volume and GIFTI surface files, applying the surface registration. 
The diffusion preprocessing pipeline included the following steps: 
normalized the b0 image intensity across runs; removed EPI distortions, 
eddy-current-induced distortions, and subject motion; corrected for 
gradient-nonlinearities; registered the diffusion data with the structural; 
brought it into 1.25 mm structural space; and masked the data with the 
final brain mask. The quality control of all the released processed data 
was conducted by HCP group. For a detailed description of data pre-
processing, refer to Glasser et al. (2013). After preprocessing, diffusion 
tensor models were estimated using weighted linear least squares fitting. 
From the estimated tensor image, a fractional anisotropy (FA) image was 
computed. 

For the AOMIC dataset, the T1-weight images were corrected for 
intensity non-uniformity, skull-stripped, and reconstructed brain surface 
using recon-all (FreeSurfer v6.0.1). The brain mask estimated previously 
was refined with a custom variation of the method. Spatial normaliza-
tion to the ICBM 152 Nonlinear Asymmetrical template was achieved 
through nonlinear registration. Brain tissue segmented into cerebrospi-
nal fluid, white-matter, and gray-matter. Diffusion images were pre-
processed using a custom pipeline that combines tools from MRtrix3 and 
FSL v6.0. Multiple dMRI scans, diffusion gradient table and b-value in-
formation were concatenated prior to preprocessing. The diffusion data 
was denoised, Gibbs ringing artifacts were removed, and eddy current 
and motion correction were performed. Within eddy, a quadratic first- 
level and linear second-level model were performed and outlier 
replacement was performed with default parameters. Then, bias 
correction was performed, a brain mask was extracted, and possible is-
sues with the diffusion gradient table were corrected. After pre-
processing, a diffusion tensor model was fit on the preprocessed data 
using weighted linear least squares via MRtrix3. From the estimated 
tensor image, a fractional anisotropy (FA) image was computed. The 
quality control of all the released processed data was conducted by 
AOMIC group. For a detailed description of the data preprocessing, 
please refer to Snoek et al. (2021). 

2.3. Construction of MSN 

The same MSN construction procedures were used for discovery and 
replication datasets. To ensure comparability with prior research on 
morphometric similarity networks (Li et al., 2021; Morgan et al., 2019; 
Seidlitz et al., 2018), we adopted the Desikan-Killiany atlas in the cur-
rent study. Utilizing the same atlas facilitates a direct comparison be-
tween our MSN pattern and the previously published MSN pattern by 
Morgan et al. (2019). Specifically, the cortical surfaces were divided into 
308 spatially contiguous regions derived from the 68 cortical regions in 
the Desikan-Killiany atlas. This parcellation produced regions of 
approximately equal size (~500 mm2) using a backtracking algorithm 
using a backtracking algorithm, as previously described (Romero-Garcia 
et al., 2012). This approach minimizes the influence of the variability in 
parcel sizes (Li et al., 2021; Morgan et al., 2019; Seidlitz et al., 2018). 
This parcellated Desikan-Killiany atlas was transformed to each partic-
ipant’s surface to obtain an individual surface parcellation, which was 
then interpolated and expanded to the participant’s DWI volumes. For 
each region, eight features (available for both datasets) from the pro-
cessed T1-weighted and DWI images were extracted, including cortical 
thickness (CT), surface area (SA), gray matter volume (GM), mean 
curvature (MC), intrinsic (Gaussian) curvature (GC), curved index (CI), 
folding index (FI), and fractional anisotropy (FA). Previous studies have 
demonstrated that these eight cortical metrics are closely associated 
with each other, providing complementary information about specific 
regions of the cerebral cortex (King and Wood, 2020; Morgan et al., 
2019; Seidlitz et al., 2018). Specifically, cortical thickness provides the 
information of the thickness of the outer layer of the cerebral cortex. 
Surface area refers to the surface of the cerebral cortex, the outer layer of 
the brain, providing information about cortical folding patterns. Gray 
matter volume provides important information about the overall struc-
tural characteristics of the brain. Mean curvature provides information 
about the curvature or bending of a cortical surface at each point, thus 
indicating local folding. Intrinsic (Gaussian) curvature provides infor-
mation about the local geometry and curvature of a surface. The curv-
edness index provides information about the local curvature at each 
point on a surface. This information helps characterize how much a 
surface deviates from being flat or planar at specific locations. Folding 
index refers to a measure that quantifies the amount of cortical folding 
or gyrification of the brain. Higher levels of folding or gyrification 
typically suggest a greater surface area, allowing for more neurons and 
synaptic connections. Fractional anisotropy refers to scalar that quan-
tifies the extent of directional constraint on the diffusion of water mol-
ecules; it is sensitive to the colinearity of the axonal fibers and provides a 
representation of white matter integrity. 

For each participant, eight features (available for both datasets) in 
each region were z-normalized. Pearson’s correlation analysis was then 
performed on the morphometric features between each paired region, 
which was compiled to form a 308 × 308 MSN for each participant 
(Fig. 1). 

To test the robustness of MSN construction, we performed a reduc-
tion in the number of morphometric features available for analysis. 
Here, the leave-one-feature-out approach was used: we calculated the 
correlation between the MSN constructed with all the eight features (CT, 
SA, GM, MC, IC, CI, FI, and FA) and the MSN constructed with one 
feature left out (for example, leave the CT out) for each subject. Then, we 
averaged the correlations across participants. Additionally, we exam-
ined the stability of the current 8-feature MSNs by comparing them to 
the commonly used 5-feature MSNs (Yang et al., 2021). The 5-feature 
MSNs refers to a reduced set of 5 morphometric features that can be 
derived from T1-weighted MRI scans: CT, SA, GM, MC, and IC. 

2.4. Statistical analyses 

At the regional level, we first calculated the regional MSN values (i. 
e., regional degree) as the sum of weighted correlation coefficients 
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between a given region and all other regions. Then, the association be-
tween BMI and regional MSN values was investigated using linear 
regression analyses adjusting for age, sex, years of education, handed-
ness, race (categorized as white or other than white), and total intra-
cranial volume (TIV) in the regression models. To obtain robust results, 
we used a permutation analysis of linear models (PALM; Winkler et al. 
2014) to determine the significance for all correlational analyses. To 
correct for the impact of multiple comparisons, we applied the false 
discovery rate (FDR) correction method. A p-value of less than 0.05, 
after FDR correction, was considered significant. At the edge level, we 
further conducted the seed-based structural ‘connectivity’ analyses (i.e., 
one column in the 308 × 308 MSN matrix) to detect the detailed 
structural covariance between the regions identified by the regional 
analysis above and other rest regions to account for individual variations 
of BMI. 

2.5. Control analysis 

We validated the main findings by considering several control ana-
lyses. Given the known sex differences in obesity and at the brain level, 
sex was included as a covariate in our analysis. However, to further 
elucidate the relationship, we conducted additional analyses to test if 
the association between BMI and our main findings in regional MSN 
differs significantly between sexes. Fisher’s Z-Transformation test was 
used to test whether the correlations between BMI and regional MSN 
observed in main analysis in males and females statistically different. 
Relatedly, we also carried out a control analysis to determine whether 
our primary findings concerning regional MSN are significantly associ-
ated with the number of days since the last menstrual period in female 
participants with regular cycles (N = 198). Additionally, we accounted 
for other potential socioeconomic status (such as household income and 
employment status) and ethnicity in our association analysis model. 
Finally, we validated our main results by considering only 5 

morphometric features derived from T1 data. 

2.6. External validation: AOMIC dataset 

A between-group difference analysis was conducted on regions 
showing significant regional morphometric similarity in the discovery 
dataset. These regions were then used as seeds to analyze the abnormal 
structural covariance in the obese group compared to the normal BMI 
group. Age, sex, education, and TIV were adjusted in the regression 
models. 

3. Results 

3.1. Robustness and stability of MSN construction 

Regarding the stability of nodal similarity, averaged correlations for 
all the eight are notably high. Specifically, the average r of leaving CI out 
is 0.94; the average r of leaving CT out is 0.91; the average r of leaving 
FA out is 0.92; the average r of leaving FI out is 0.98; the average r of 
leaving GC out is 0.91; the average r of leaving GM out is 0.99; the 
average r of leaving MC out is 0.93; the average r of leaving SA out is 
0.96. In addition, we found a high correlation (r = 0.84) in the sample 
mean regional values (mean map) between the current 8-feature MSNs 
and a 7-feature MSNs recently reported by Morgan et al. (2019). 

In terms of the stability of edge weights, averaged correlations for all 
the eight are notably high as well. Specifically, the average r of leaving 
CI out is 0.99; the average r of leaving CT out is 0.92; the average r of 
leaving FA out is 0.92; the average r of leaving FI out is 0.98; the average 
r of leaving GC out is 0.98; the average r of leaving GM out is 0.99; the 
average r of leaving MC out is 0.96; the average r of leaving SA out is 
0.96. These results demonstrated the high robustness of the morpho-
metric similarity method in relation to the exclusion of any individual 
feature. 

Fig. 1. Analysis flowchart. (a) Individualized morphometric similarity network (MSN) construction. (b) Linear regression analysis in HCP dataset. (c) Control 
analysis. (d) d. External validation: between-group difference was conducted in AOMIC dataset. 
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We further observed strong similarity between the 5-feature MSNs 
and the 8-feature MSNs. Specifically, the sample mean edge weights and 
nodal similarities were highly correlated (r = 0.823, p < 0.001 for edge 
weights; r = 0.943, p < 0.001 for nodal similarities). However, the 
standard deviations (SD) for both edge weights and nodal similarity 
were higher in the 5-feature MSNs (0.332 and 0.022, respectively) 
compared to the 8-feature MSNs (0.290 and 0.018, respectively), This 
suggests the estimation of MSN is more precise when based on a larger 
number of parameters. Therefore, we opted for the 8-feature MSNs for 
the subsequent analyses. 

3.2. Association between BMI and MSNs 

3.2.1. At the regional level: nodal degree 
The cortical map depicted in Fig. 2a illustrates the anatomical dis-

tribution of areas with positive and negative similarity in the discovery 
dataset, which is based on average value from participants with normal 
weight). This map highlights areas of high positive morphometric sim-
ilarity predominantly in frontal and temporal cortex, while areas with 
high negative morphometric similarity are observed in the occipital, 
somatosensory, and motor cortex. The patterns align with findings from 
previous independent studies (Morgan et al., 2019; Seidlitz et al., 2018), 
underscoring its replicability. Furthermore, the observed distribution 
pattern is consistent with existing knowledge, indicating that the pri-
mary cortex exhibits a higher level of histological differentiation 
compared to the association cortex. 

We identified a significant positive correlation between BMI and 
regional morphometric similarity in the bilateral medial orbitofrontal 
cortex (left mOFC1 (centroid (MNI): X=-6, Y = 17, Z=-17;right mOFC2 

(centroid (MNI): X = 7, Y = 19, Z=-18)), as well as negative correlations 
between BMI and regional morphometric similarity in the lateral orbi-
tofrontal cortex (lOFC, centroid (MNI): X=− 29, Y = 25, Z=-13) and 
bilateral postcentral gyrus (all pFDR < 0.05, centroid (MNI): X=-16, Y=- 
36, Z = 71; X = 14, Y=-35, Z = 72) as shown in Fig. 2b and c). These 
findings suggested an increased morphometric similarity in the mOFC 
and decreased morphometric similarity in the lOFC and postcentral 
gyrus among individuals with higher BMI. To illustrate these relation-
ships, significant regions were plotted on the average regional MSN map 
derived from individuals with normal weight (Fig. 2d). The observed 
positive regional r-values alongside negative mean MSN in mPFC indi-
cated a de-differentiation of this area in individuals with higher BMI. 
Conversly, negative regional r-value with positive mean MSN in lOFC 
suggested a decoupling of this area in individuals with higher BMI. 
Similarly, negative regional r-value accompanied by negative mean 
MSN in postcentral gyrus indicated a hyper-differentiation of this area in 
individuals with higher BMI. 

3.2.2. At the network level: mOFC- and lOFC-based structural 
‘connectivity’ 

To delve deeper into the specific structural covariance patterns 
associated with the observed morphometric changes in individuals with 
higher BMI, particularly the general de-differentiation observed in the 
mOFC, decoupling in the lOFC, and hyper-differentiation in the post-
central gyrus, we conducted the seed-based structural ‘connectivity’ 
analyses. This involved examining one column in the 308 × 308 MSN 
matrix. The aim was to detect the detailed structural covariance between 
these regions and the rest of the brain, thereby shedding light on how 
individual variations in BMI are associated with changes in the brain’s 

Fig. 2. Associations between body mass index and regional morphometric similarity. (a) Averaged regional morphometric similarity across all normal weight 
participants. (b) r statistics for the associations between body mass index and regional morphometric similarity. (c) Significant associations between body mass index 
and regional morphometric similarity. FDR corrected p < 0.05) (d) Scatterplot of mean regional morphometric similarity of all normal weight participants (x axis) vs. 
association r statistic (y axis). 
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structural network. 
In the context of network neuroscience, de-differentiation refers to 

the process where previously distinct and specialized neural networks or 
brain regions become less unique, showing more overlap in their func-
tions. Decoupling refers to the reduction of the functional connectivity 
or interaction between different brain regions or networks. 

With the lOFC as the seed, the mean pattern across subjects showed 
that lOFC mainly coupled with cognitive systems, such as the frontal, 
temporal, and parietal cortex, while differentiated from limbic, senso-
rimotor, and visual systems (Fig. 3a). To contextualize the further 
finding of association between BMI and seed-based structural covariance 
into network level, the positive and negative association edges were 
further summarized by the number of edges within large-scale func-
tional networks (Fig. 3b) according to Yeo’s seven networks (Yeo et al., 
2011). To test whether the number of edges in each within network is 
not randomly distributed, we conducted 5000 spatial permutation tests 
to obtain a null distribution of the number of edges within each network 
while accounting for the spatial autocorrelation of brain regions (Burt 
et al., 2020). Specifically, we employed a "spin"-based approach to 
address potential confounding effects associated with spatial autocor-
relation. The spin test, a spatial permutation method (Váša et al., 2018), 
operates through angular permutations of spherical projections on the 
cortical surface. It is important to note that the spin test maintains the 
spatial covariance structure of the data, making it a considerably more 
conservative approach than randomly shuffling locations. In contrast to 
the latter, which disrupts the spatial covariance structure and yields an 
unrealistically unconservative null distribution, the spin test ensures the 
preservation of the inherent spatial relationships within the data. Then, 
the pspin values were determined by comparison to the null models. We 
found individuals’ BMI was (1) negatively related to connections be-
tween the lOFC and cognitive systems (DMN, frontoparietal network 
[FPN]), indicating a decoupling pattern; and (2) positively related to 
connections between lOFC and visual systems, indicating a 
de-differentiation pattern (Fig. 3b). 

In contrast, with the mOFC as a seed, the mean pattern across sub-
jects showed that the mOFC mainly coupled with limbic, sensorimotor, 

and visual systems, while differentiated from other cognitive systems, 
such as the frontal, temporal, and parietal cortex (Figs. 4a and 5a). 
Spatial correlation analysis further showed that there was a significant 
negative correlation between the lOFC and the mOFC seed-based 
covariance profile (Fig. 6), suggesting opposite patterns. The statistical 
significance of a spatial correlation was also determined by 5000 spatial 
permutation tests. In contrast to the result of lOFC seed-based structural 
covariance. We found BMI was (1) negatively related to connections 
between the mOFC and the visual system, suggesting a decoupling 
pattern; (2) positively related to connections between the mOFC and 
sensorimotor system, suggesting a hypercoupling pattern; and (3) 
positively related to connections between mOFC and both the default 
mode network (DMN) and the ventral attention network (VAN), sug-
gesting a de-differentiation pattern (Figs. 4b and 5b). 

When taking postcentral gyrus as seed, we did not observe any sig-
nificant results with FDR correction. 

3.3. Control analysis 

Our main findings were further validated by several control analyses. 
Firstly, we examined the influence of sex the correlation between BMI 
and regional MSN by comparing these correlations in males and females. 
The results indicated no statistically significant differences (all p values 
> 0.1, Table S1), suggesting that sex does not significantly impact our 
findings regarding regional MSN. Additionally, among female partici-
pants with regular menstrual cycles, we investigated the potential effect 
of the menstrual cycle phase by correlating the number of days since the 
last period with regional MSN in our study. No significant correlations 
were found (all p values > 0.05, Table S2), indicating that menstrual 
cycle phase does not significantly affect the regional MSN results in our 
study. The inclusion of variables related to socioeconomic status and 
ethnicity did not significantly alter the primary findings, as illustrated in 
Fig. S1, suggesting that socioeconomic status and ethnicity do not 
confound our main results. Finally, we employed five morphometric 
features derived from T1-weighted MRI data to construct the MSNs. 
Analyses based on these morphometric features confirmed the 

Fig. 3. Associations between body mass index and lOFC seed-based structural covariance. (a) Averaged lOFC seed-based morphometric similarity across all normal 
weight participants. (b) Significant associations between body mass index and lOFC seed-based morphometric similarity. FDR corrected p < 0.05). VN=visual 
network; SMN=Somatomotor network; DAN=Dorsal attention network; VAN=Ventral attention network; LN=Limbic network; FPN=Frontoparietal network; 
DMN=Default mode network. *The number of edges in corresponding network are not randomly distributed. 
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robustness of our primary findings, as indicated by the unaltered results 
shown in Fig. S2. However, we additionally found, at regional level, BMI 
was negatively associated with the similarity of the occipital cortex 
(Fig. S2); at the network level, BMI was negatively associated with 

similarity between the lOFC and somatomotor network. As indicated in 
‘Robustness and stability of MSN construction’ section, greater precision 
of MSN estimation can be achieved based on more parameters. There-
fore, we regarded MSNs constructed with eight features as the main 

Fig. 4. Associations between body mass index and mOFC seed-based structural covariance. (a) Averaged mOFC1 seed-based morphometric similarity across all 
normal weight participants. (b) Significant associations between body mass index and mOFC1 seed-based morphometric similarity. FDR corrected p < 0.05). 
VN=visual network; SMN=Somatomotor network; DAN=Dorsal attention network; VAN=Ventral attention network; LN=Limbic network; FPN=Frontoparietal 
network; DMN=Default mode network. *The number of edges in corresponding network are not randomly distributed. 

Fig. 5. Associations between body mass index and mOFC2 seed-based structural covariance. (a) Averaged mOFC2 seed-based morphometric similarity across all 
normal weight participants. (b) Significant associations between body mass index and mOFC2 seed-based morphometric similarity. FDR corrected p < 0.05). 
VN=visual network; SMN=Somatomotor network; DAN=Dorsal attention network; VAN=Ventral attention network; LN=Limbic network; FPN=Frontoparietal 
network; DMN=Default mode network. *The number of edges in corresponding network are not randomly distributed. 
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results. 

3.4. Validation analysis on an independent dataset 

Similar to findings observed in the discovery HCP dataset, in an in-
dependent AOMIC validation dataset, we found that the obese group 
showed increased regional similarity in mOFC2 and decreased regional 
similarity in lOFC compared to normal weight group (Fig. 7a and d). 
Also, the general results of lOFC and mOFC seed-based structural 
covariance in the AOMIC dataset were similar to those observed in the 

HCP dataset, as evidenced by significant spatial correlations between 
them (Fig. 7b,c and e,f). These results thus provided evidence for the 
robustness of the main findings. 

4. Discussion 

This study represents an important first step in depicting how 
structural similarity or covariance between brain regions changes with 
individual differences of obesity, using MSNs, a robust new structural 
organization method. We found strong evidence that the ventral medial 

Fig. 6. Spatial correlation between lOFC seed-based SC and mOFC seed-based SC. (a) Negative spatial correlation between lOFC seed-based SC and mOFC1 seed- 
based SC. (b) Negative spatial correlation between lOFC seed-based SC and mOFC2 seed-based SC. 

Fig. 7. validation in an independent dataset. (a) Significantly decreased coupling of lOFC in obese group compared with normal weight group. Error bar represents 
95 % confidence intervals. (b) Group difference between obese and normal weight group in lOFC seed-based SC. Top 100 edges only for visualization. (c) Significant 
spatial correlation between r statistics (between BMI and IOFC seed-based SC) in HCP and T statistic value (Obese vs Normal weight) in AOMIC. (d) Significantly 
decreased de-differentiation of mOFC2 in obese group compared with normal weight group. Error bar represents 95 % confidence intervals. (e) Group difference 
between obese and normal weight group in mOFC2 seed-based SC. Top 100 edges only for visualization. (f) Significant spatial correlation between r statistics 
(between BMI and mOFC2 seed-based SC) in HCP and T statistic value (Obese vs Normal weight) in AOMIC. VN=visual network; SMN=Somatomotor network; 
DAN=Dorsal attention network; VAN=Ventral attention network; LN=Limbic network; FPN=Frontoparietal network; DMN=Default mode network. 
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reward and lateral non-reward OFC circuits showed opposite changes of 
morphometric similarity in individual variations of obesity. Specifically, 
the lOFC showed decoupling in obesity, which was manifested by its 
decoupling with the cognitive systems including DMN and FPN. 
Whereas mOFC showed de-differentiation in obesity, this was primarily 
represented by its de-differentiation with cognitive and attention sys-
tems, including DMN and VAN. In addition, mOFC showed decoupling 
with the visual system, and hypercoupling with the sensorimotor system 
in obesity, while the lOFC showed de-differentiation with the visual 
system in obesity. The external validation results provided the robust-
ness of our major findings, suggesting that OFC-related neuroanatomical 
similarity contributing to body mass variability is sensitive in dis-
tinguishing obese and normal individuals. These findings together pro-
vided novel neural mechanism to support the reward-control interaction 
imbalance theory in obesity (Lowe et al., 2020, 2019), with the hope of 
guiding development of novel and effective treatments for obesity. 

The OFC plays a vital role in processing and integrating sensory in-
formation, emotion, and reward-related signals to guide goal-directed 
behavior (Knudsen and Wallis, 2022). It is widely accepted that the 
OFC can be subdivided into several distinct cytoarchitectonic areas, 
each with unique connectivity patterns and functional properties. A 
burgeoning body of research has delved into the nuanced functional 
distinctions among the subregions of the OFC (Noonan et al., 2010; 
Wang et al., 2022).Within this intricate landscape, the medial OFC 
emerges as a key subregion, which is particularly relevant to hot exec-
utive functions such as the evaluation of reward and punishment out-
comes, as well as in the representation of subjective value (Friedman and 
Robbins, 2022; Kringelbach and Rolls, 2004; McClure et al., 2007; 
Salehinejad et al., 2021). The mOFC is also densely interconnected with 
other brain regions involved in emotional processing, such as the 
amygdala, and is crucial for integrating emotional and cognitive infor-
mation to make adaptive decisions (Rolls et al., 2023a). In contrast, the 
lateral OFC, a part of the lateral prefrontal cortex, is more closely linked 
to cold executive functions such as flexible decision-making and inhib-
itory control (Friedman and Robbins, 2022; Kringelbach and Rolls, 
2004; McClure et al., 2007; Salehinejad et al., 2021). Lesions or 
dysfunction in the lOFC have been linked to deficits in impulse control 
and the ability to adjust behavior based on changing contingencies (Mar 
et al., 2011). Consistent with the functional distinction between lOFC 
and mOFC, we found, with lOFC as the seed, the mean pattern across 
subjects showed that lOFC mainly coupled with cognitive systems, such 
as frontal, temporal, and parietal cortex, while differentiated from 
limbic, sensorimotor, and visual systems. Interestingly, the pattern is 
reversed for mOFC as the seed. Therefore, our seed-based connection 
analysis provided novel structural evidence to support that the lOFC and 
mOFC have dissociable connection patterns with the rest of the brain. 

Recent structural neuroimaging studies reported that increased BMI 
was associated with reduced cortical thickness in lOFC, which is asso-
ciated with diminished executive function (Laurent et al., 2020; Ronan 
et al., 2020). The present study extended these findings by character-
izing the morphometric similarity and found that higher BMI was 
correlated with lesser morphometric similarity in the lOFC. Prior work 
has demonstrated that cortical regions that are similar in terms of their 
morphology are more likely to be axonally connected to each other (Wei 
et al., 2018), indicating that morphological similarity can serve as an 
indicator of anatomical connectivity (Seidlitz et al., 2018). A decreased 
regional MSN of lOFC in individuals with increased BMI implied 
decreased morphometric similarity or greater morphometric decoupling 
between lOFC and the rest of the cortex, which can be interpreted as 
reduced anatomical connectivity to and from the less similar, more 
differentiated cortical areas (Li et al., 2021). We further observed that 
BMI was negatively related to the coupling between lOFC and the 
higher-order cognitive systems (DMN and FPN). It has been suggested 
that the DMN is a task-negative network that underlies self-referential 
thinking, memory encoding and retrieval, and social reasoning (Grei-
cius et al., 2003), while the FPN is a major task-positive network, which 

supports executive functioning such as working memory, impulse con-
trol, and goal-oriented cognition (Barkhof et al., 2014). Given that 
overweight and obesity are considered to be linked to aberrant inhibi-
tory control, cognitive flexibility (Bauer and Houston, 2017; Lips et al., 
2014; Yang et al., 2018), and self-directed thinking (Zhang et al., 
2021a), our results thus provided novel anatomical evidence supporting 
the decreased dietary self-control (as indicated by a decoupling pattern 
between lOFC and FPN), as well as abnormal interaction between food 
intake control and self-focused and body-focused ruminations (i.e., a 
decoupling pattern between lOFC and DMN) in adults with a high BMI. 

Interestingly, the mOFC showed the opposite changes of morpho-
metric similarity in individual variations of obesity. Specifically, a 
higher BMI was significantly related to increased regional morphometric 
similarity in the mOFC, as well as strengthened structural connectivity 
(i.e., weaker differentiation) between mOFC and cognitive and attention 
systems (DMN and VAN). The mOFC is responsible for rewarding 
functions, including reward-based eating drive and reward sensitivity 
(Li et al., 2022). Furthermore, altered brain structure in the mOFC, such 
as gray matter volume and cortical thickness, has been associated with 
binge eating (Smith et al., 2021; Zhang et al., 2021c) and obesity 
(Marqués-Iturria et al., 2013; Smucny et al., 2012). A positive correla-
tion between BMI and regional morphometric similarity in the mOFC 
extended previous sMRI findings (Marqués-Iturria et al., 2013; Smucny 
et al., 2012) by demonstrating decreased morphometric differentiation 
between mOFC and the rest of the cortex in individual with higher BMI. 
It has been suggested that the involvement of cognitive and attention 
systems (DMN and VAN) may represent the crucial neural substrates 
that can explain the role of internal mental awareness and attentional 
processes in overweight and obesity (Sadler et al., 2018; Wang et al., 
2023). Theoretically, the brain’s reward and high-order cognitive re-
gions (for example, OFC and PFC) play an important role in excessive 
food intake and obesity (for reviews, see Lowe et al. 2020, 2019). 
Notably, previous research has demonstrated that the neural correlates 
of inhibition and reward are negatively correlated and proposed that 
abnormal association between inhibitory and reward circuitry may be a 
prospective marker of risk for impulsive and addictive behaviors 
(Weafer et al., 2019). Therefore, enhanced structural covariance be-
tween the mOFC and cognitive systems, manifesting as weaker differ-
entiation between them, can be reflective of an aberrant interaction 
between reward reactivity and inhibitory control in adults with a high 
level of BMI. 

This study expands on the previous work in this area (for reviews, see 
Chen et al. 2020, Li et al. 2023, Nota et al. 2020, Stice and Burger 2019) 
by using a recently developed morphometric similarity mapping 
approach to examine how human cortical structural covariance net-
works underpin individual differences in BMI. It reveals that the medial 
reward and lateral non-reward OFC circuits showed opposite changes of 
regional morphometric similarity in obesity. Notably, the structural 
covariance of lOFC/mOFC with primary systems also exhibited opposite 
directions. The lOFC showed de-differentiation with the visual and 
sensorimotor systems in obesity (a positive relationship of BMI with 
connections between lOFC and visual and sensorimotor networks). 
However, the mOFC exhibited decoupling with visual system, and 
hypercoupling with sensorimotor system in obesity (a negative rela-
tionship of BMI with connections within the visual network, and a 
positive relationship with connections within sensorimotor network). 
There is evidence that functional connectivity measured when partici-
pants were drinking a milkshake could effectively predict waist 
circumference, indicating the importance of connectivity between sen-
sory processing systems (visual and motor networks) and higher-order 
systems (subcortical, cingulo-opercular, and default networks) in char-
acterizing body mass variability (Farruggia et al., 2020). Thus, our 
current results may suggest that information integration between the 
high-order and primary regions/networks could explain the potential 
interactions of dysfunctional reward/inhibition functions with visual 
processing of food cues in obesity (Farruggia et al., 2020; Wang et al., 
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2023). 
Bariatric surgery is the most effective treatment for clinical obesity 

(Arterburn et al., 2020). Other interventions and treatments including 
dietary (Chao et al., 2021), exercise (Carraça et al., 2021), pharmaco-
logical (May et al., 2020), and neuromodulation such as transcranial 
direct current stimulation and neurofeedback (Gouveia et al., 2021) are 
also used and have achieved promising outcomes (Li et al., 2023). These 
interventions appeared to normalize hyper- and hypoactivations of 
brain regions involved in food-intake control, cognitive function, and 
reward processing, and also promote recovery of brain structural ab-
normalities (for a review, see Li et al. 2023). However, most of them 
focused on a single psychological function (i.e., inhibition, reward, or 
body awareness). In fact, intervention measures targeting a combination 
of executive functions (e.g., updating, inhibiting, and shifting) have 
been found to be more effective than those focused on one function 
(Hofmann et al., 2012). Together with the findings of the present study, 
future research can further integrate reward-related and food intake 
control-related factors into specific weight loss interventions. 

The left dorsolateral prefrontal cortex (DLPFC) has been widely 
recognized as a primary target for modulation in previous noninvasive 
brain stimulation studies in obesity literature (De Klerk et al., 2023; 
Zeng et al., 2021). Despite this recognition, it is essential to acknowledge 
that interventions aimed at this specific region remain largely experi-
mental, with the efficacy of these intervention yet to be firmly estab-
lished (Li et al., 2023; Zeng et al., 2021). The morphometric differences 
observed in the mOFC, associated with reward, and the lOFC, linked to 
non-reward, among individuals with obesity suggest a promising alter-
native for noninvasive brain stimulation interventions. Focusing on 
noninvasive brain stimulation for both medial and lateral OFC presents a 
dual-targeted strategy. It aims to modulate neural pathways related to 
both reward and non-reward processes. This approach aligns with the 
complex interplay between reward and non-reward circuits in obesity 
(Lowe et al., 2020, 2019). Simultaneously addressing both reward and 
non-reward aspects through noninvasive brain stimulation has the po-
tential to induce more lasting changes, promoting successful weight 
reduction outcomes. 

Some limitations of this study should be noted. First, although BMI 
has been generally considered an index of body fatness, it may be a 
poorer predictor for cardiovascular risk than waist circumference and 
waist-to-height ratio (Farruggia et al., 2020; Yan et al., 2007). Future 
studies could apply waist circumference and waist-to-height ratio, or 
combine multiple indicators to construct a more comprehensive and 
accurate indicator to further reveal its neural markers. Second, since this 
study is cross-sectional, our results cannot establish a causal relation-
ship. Therefore, future longitudinal studies are needed to investigate 
whether the relevant MSNs discovered in this study can predict changes 
in BMI. Third, we only considered the linear relationship between BMI 
and MSN; however, complex brain networks may require nonlinear 
explanations, which may be enhanced by algorithm optimization in 
future studies. Finally, despite the homogeneous external phenotypes 
observed in obese individuals, the causes of obesity are complex and 
may be driven by various neurobiological factors (Field et al., 2013; 
Stice and Burger, 2019). Given that MSN recapitulates fundamental 
properties of cortical organization - including gene expression and cyto- 
and myeloarchitecture to evolutionary expansion (Yang et al., 2021), 
the MSN has the potential to be applied as a “brain fingerprint” to 
distinguish different subtypes of obesity in the future (Han et al., 2023a). 
As subcortical regions typically exhibit only grey matter volume, MSN is 
limited in its ability to construct similarity measures between subcor-
tical regions or between cortical and subcortical regions. Since MSNs 
rely on multiple MRI parameters, the absence of additional morpho-
metric data in subcortical areas hinders the comprehensive assessment 
needed for constructing meaningful anatomical networks in these re-
gions. With technological advancements, particularly in 
multi-parametric MRI, future research can further explore the structural 
similarities of subcortical regions. 

5. Conclusions 

This study revealed opposite changes in morphometric similarity of 
the medial reward and lateral non-reward OFC circuits in obesity. As an 
important first step in revealing the role of underlying structural 
covariance in body mass variability, the present study presents a novel 
mechanism that underlies the reward-control interaction imbalance in 
obesity. It underscores the importance of incorporating aspects associ-
ated with both the food reward and the regulation of food intake into 
specialized weight loss interventions, suggesting a comprehensive 
approach to tackle obesity. Additionally, the discovery of convergence 
in the OFC offers novel targets for weight loss interventions through 
noninvasive brain stimulation, expanding beyond the traditional focus 
on the left DLPFC. Future longitudinal studies are crucial in order to 
understand the dynamic nature of these observed changes over time. 
Specifically, it is important to investigate whether these morphometric 
alterations in the OFC circuits are a cause or a consequence of obesity. 
This distinction is critical for developing targeted weight-management 
interventions. 
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