001024149 001__ 1024149
001024149 005__ 20240712112901.0
001024149 0247_ $$2doi$$a10.1016/j.enbuild.2022.112298
001024149 0247_ $$2ISSN$$a0378-7788
001024149 0247_ $$2ISSN$$a1872-6178
001024149 0247_ $$2datacite_doi$$a10.34734/FZJ-2024-01991
001024149 0247_ $$2WOS$$aWOS:000999939100005
001024149 037__ $$aFZJ-2024-01991
001024149 082__ $$a690
001024149 1001_ $$0P:(DE-Juel1)174440$$aMork, Maximilian$$b0$$eCorresponding author
001024149 245__ $$aNonlinear Hybrid Model Predictive Control for building energy systems
001024149 260__ $$aAmsterdam [u.a.]$$bElsevier Science$$c2022
001024149 3367_ $$2DRIVER$$aarticle
001024149 3367_ $$2DataCite$$aOutput Types/Journal article
001024149 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1711551868_17725
001024149 3367_ $$2BibTeX$$aARTICLE
001024149 3367_ $$2ORCID$$aJOURNAL_ARTICLE
001024149 3367_ $$00$$2EndNote$$aJournal Article
001024149 520__ $$aThis paper presents a nonlinear hybrid Model Predictive Control (MPC) approach for building energy systems based on Modelica. The MPC approach takes into account two characteristics that are very common for building energy systems: nonlinearities (inherent in the building envelope and Heating, Ventilation and Air Conditioning (HVAC) systems) and discontinuities (in the form of on/ off operation, discrete operation states and operation modes). The hybrid MPC approach integrates both continuous and discrete optimization variables into the control concept and thus is capable of controlling building energy systems with binary or integer decision variables, switching dynamics or logic if-then-else constraints. By employing a time-variant linearization approach, nonlinear Modelica optimization problems are approximated with high accuracy and transformed into a linearized state-space representation. Based on the linearization output, a linearized optimization problem is generated automatically in every MPC iteration, which is extensible by various integer characteristics and is accessible for a wide range of mixedinteger solvers. A simulation study on a nonlinear Modelica building energy system demonstrates the control quality of the proposed toolchain revealing a small linearization error and successful integration of multiple integer characteristics. The benefits of the approach are manifested by comparing its performance with different reference control strategies.
001024149 536__ $$0G:(DE-HGF)POF4-1121$$a1121 - Digitalization and Systems Technology for Flexibility Solutions (POF4-112)$$cPOF4-112$$fPOF IV$$x0
001024149 536__ $$0G:(DE-HGF)POF4-1123$$a1123 - Smart Areas and Research Platforms (POF4-112)$$cPOF4-112$$fPOF IV$$x1
001024149 536__ $$0G:(BMWi)03EGB0010A$$aEG2050: LLEC-Verwaltungsbau: Klimaneutraler Verwaltungsbau als aktiver Teil des Living Lab Energy Campus (LLEC) (03EGB0010A)$$c03EGB0010A$$x2
001024149 536__ $$0G:(DE-HGF)LLEC-2018-2023$$aLLEC - Living Lab Energy Campus (LLEC-2018-2023)$$cLLEC-2018-2023$$x3
001024149 588__ $$aDataset connected to DataCite
001024149 65027 $$0V:(DE-MLZ)SciArea-250$$2V:(DE-HGF)$$aOthers$$x0
001024149 7001_ $$0P:(DE-HGF)0$$aMaterzok, Nick$$b1
001024149 7001_ $$0P:(DE-Juel1)8457$$aXhonneux, André$$b2$$ufzj
001024149 7001_ $$0P:(DE-Juel1)172026$$aMüller, Dirk$$b3$$ufzj
001024149 773__ $$0PERI:(DE-600)1502295-X$$a10.1016/j.enbuild.2022.112298$$gVol. 270, p. 112298 -$$p112298 -$$tEnergy and buildings$$v270$$x0378-7788$$y2022
001024149 8564_ $$uhttps://juser.fz-juelich.de/record/1024149/files/Mork2022%20-%20Nonlinear%20Hybrid%20Model%20Predictive%20Control%20for%20building%20energy%20systems_Preprint.pdf$$yOpenAccess
001024149 8564_ $$uhttps://juser.fz-juelich.de/record/1024149/files/Mork2022%20-%20Nonlinear%20Hybrid%20Model%20Predictive%20Control%20for%20building%20energy%20systems_Preprint.gif?subformat=icon$$xicon$$yOpenAccess
001024149 8564_ $$uhttps://juser.fz-juelich.de/record/1024149/files/Mork2022%20-%20Nonlinear%20Hybrid%20Model%20Predictive%20Control%20for%20building%20energy%20systems_Preprint.jpg?subformat=icon-1440$$xicon-1440$$yOpenAccess
001024149 8564_ $$uhttps://juser.fz-juelich.de/record/1024149/files/Mork2022%20-%20Nonlinear%20Hybrid%20Model%20Predictive%20Control%20for%20building%20energy%20systems_Preprint.jpg?subformat=icon-180$$xicon-180$$yOpenAccess
001024149 8564_ $$uhttps://juser.fz-juelich.de/record/1024149/files/Mork2022%20-%20Nonlinear%20Hybrid%20Model%20Predictive%20Control%20for%20building%20energy%20systems_Preprint.jpg?subformat=icon-640$$xicon-640$$yOpenAccess
001024149 909CO $$ooai:juser.fz-juelich.de:1024149$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire
001024149 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)174440$$aForschungszentrum Jülich$$b0$$kFZJ
001024149 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)8457$$aForschungszentrum Jülich$$b2$$kFZJ
001024149 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)172026$$aForschungszentrum Jülich$$b3$$kFZJ
001024149 9131_ $$0G:(DE-HGF)POF4-112$$1G:(DE-HGF)POF4-110$$2G:(DE-HGF)POF4-100$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-1121$$aDE-HGF$$bForschungsbereich Energie$$lEnergiesystemdesign (ESD)$$vDigitalisierung und Systemtechnik$$x0
001024149 9131_ $$0G:(DE-HGF)POF4-112$$1G:(DE-HGF)POF4-110$$2G:(DE-HGF)POF4-100$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-1123$$aDE-HGF$$bForschungsbereich Energie$$lEnergiesystemdesign (ESD)$$vDigitalisierung und Systemtechnik$$x1
001024149 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2023-10-22
001024149 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2023-10-22
001024149 915__ $$0StatID:(DE-HGF)1160$$2StatID$$aDBCoverage$$bCurrent Contents - Engineering, Computing and Technology$$d2023-10-22
001024149 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search$$d2023-10-22
001024149 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bENERG BUILDINGS : 2022$$d2023-10-22
001024149 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2023-10-22
001024149 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2023-10-22
001024149 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
001024149 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC$$d2023-10-22
001024149 915__ $$0StatID:(DE-HGF)9905$$2StatID$$aIF >= 5$$bENERG BUILDINGS : 2022$$d2023-10-22
001024149 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2023-10-22
001024149 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2023-10-22
001024149 920__ $$lyes
001024149 9201_ $$0I:(DE-Juel1)IEK-10-20170217$$kIEK-10$$lModellierung von Energiesystemen$$x0
001024149 9801_ $$aFullTexts
001024149 980__ $$ajournal
001024149 980__ $$aVDB
001024149 980__ $$aI:(DE-Juel1)IEK-10-20170217
001024149 980__ $$aUNRESTRICTED
001024149 981__ $$aI:(DE-Juel1)ICE-1-20170217