001     1024149
005     20240712112901.0
024 7 _ |a 10.1016/j.enbuild.2022.112298
|2 doi
024 7 _ |a 0378-7788
|2 ISSN
024 7 _ |a 1872-6178
|2 ISSN
024 7 _ |a 10.34734/FZJ-2024-01991
|2 datacite_doi
024 7 _ |a WOS:000999939100005
|2 WOS
037 _ _ |a FZJ-2024-01991
082 _ _ |a 690
100 1 _ |a Mork, Maximilian
|0 P:(DE-Juel1)174440
|b 0
|e Corresponding author
245 _ _ |a Nonlinear Hybrid Model Predictive Control for building energy systems
260 _ _ |a Amsterdam [u.a.]
|c 2022
|b Elsevier Science
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1711551868_17725
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a This paper presents a nonlinear hybrid Model Predictive Control (MPC) approach for building energy systems based on Modelica. The MPC approach takes into account two characteristics that are very common for building energy systems: nonlinearities (inherent in the building envelope and Heating, Ventilation and Air Conditioning (HVAC) systems) and discontinuities (in the form of on/ off operation, discrete operation states and operation modes). The hybrid MPC approach integrates both continuous and discrete optimization variables into the control concept and thus is capable of controlling building energy systems with binary or integer decision variables, switching dynamics or logic if-then-else constraints. By employing a time-variant linearization approach, nonlinear Modelica optimization problems are approximated with high accuracy and transformed into a linearized state-space representation. Based on the linearization output, a linearized optimization problem is generated automatically in every MPC iteration, which is extensible by various integer characteristics and is accessible for a wide range of mixedinteger solvers. A simulation study on a nonlinear Modelica building energy system demonstrates the control quality of the proposed toolchain revealing a small linearization error and successful integration of multiple integer characteristics. The benefits of the approach are manifested by comparing its performance with different reference control strategies.
536 _ _ |a 1121 - Digitalization and Systems Technology for Flexibility Solutions (POF4-112)
|0 G:(DE-HGF)POF4-1121
|c POF4-112
|f POF IV
|x 0
536 _ _ |a 1123 - Smart Areas and Research Platforms (POF4-112)
|0 G:(DE-HGF)POF4-1123
|c POF4-112
|f POF IV
|x 1
536 _ _ |a EG2050: LLEC-Verwaltungsbau: Klimaneutraler Verwaltungsbau als aktiver Teil des Living Lab Energy Campus (LLEC) (03EGB0010A)
|0 G:(BMWi)03EGB0010A
|c 03EGB0010A
|x 2
536 _ _ |a LLEC - Living Lab Energy Campus (LLEC-2018-2023)
|0 G:(DE-HGF)LLEC-2018-2023
|c LLEC-2018-2023
|x 3
588 _ _ |a Dataset connected to DataCite
650 2 7 |a Others
|0 V:(DE-MLZ)SciArea-250
|2 V:(DE-HGF)
|x 0
700 1 _ |a Materzok, Nick
|0 P:(DE-HGF)0
|b 1
700 1 _ |a Xhonneux, André
|0 P:(DE-Juel1)8457
|b 2
|u fzj
700 1 _ |a Müller, Dirk
|0 P:(DE-Juel1)172026
|b 3
|u fzj
773 _ _ |a 10.1016/j.enbuild.2022.112298
|g Vol. 270, p. 112298 -
|0 PERI:(DE-600)1502295-X
|p 112298 -
|t Energy and buildings
|v 270
|y 2022
|x 0378-7788
856 4 _ |u https://juser.fz-juelich.de/record/1024149/files/Mork2022%20-%20Nonlinear%20Hybrid%20Model%20Predictive%20Control%20for%20building%20energy%20systems_Preprint.pdf
|y OpenAccess
856 4 _ |u https://juser.fz-juelich.de/record/1024149/files/Mork2022%20-%20Nonlinear%20Hybrid%20Model%20Predictive%20Control%20for%20building%20energy%20systems_Preprint.gif?subformat=icon
|x icon
|y OpenAccess
856 4 _ |u https://juser.fz-juelich.de/record/1024149/files/Mork2022%20-%20Nonlinear%20Hybrid%20Model%20Predictive%20Control%20for%20building%20energy%20systems_Preprint.jpg?subformat=icon-1440
|x icon-1440
|y OpenAccess
856 4 _ |u https://juser.fz-juelich.de/record/1024149/files/Mork2022%20-%20Nonlinear%20Hybrid%20Model%20Predictive%20Control%20for%20building%20energy%20systems_Preprint.jpg?subformat=icon-180
|x icon-180
|y OpenAccess
856 4 _ |u https://juser.fz-juelich.de/record/1024149/files/Mork2022%20-%20Nonlinear%20Hybrid%20Model%20Predictive%20Control%20for%20building%20energy%20systems_Preprint.jpg?subformat=icon-640
|x icon-640
|y OpenAccess
909 C O |o oai:juser.fz-juelich.de:1024149
|p openaire
|p open_access
|p VDB
|p driver
|p dnbdelivery
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 0
|6 P:(DE-Juel1)174440
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 2
|6 P:(DE-Juel1)8457
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 3
|6 P:(DE-Juel1)172026
913 1 _ |a DE-HGF
|b Forschungsbereich Energie
|l Energiesystemdesign (ESD)
|1 G:(DE-HGF)POF4-110
|0 G:(DE-HGF)POF4-112
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-100
|4 G:(DE-HGF)POF
|v Digitalisierung und Systemtechnik
|9 G:(DE-HGF)POF4-1121
|x 0
913 1 _ |a DE-HGF
|b Forschungsbereich Energie
|l Energiesystemdesign (ESD)
|1 G:(DE-HGF)POF4-110
|0 G:(DE-HGF)POF4-112
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-100
|4 G:(DE-HGF)POF
|v Digitalisierung und Systemtechnik
|9 G:(DE-HGF)POF4-1123
|x 1
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2023-10-22
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2023-10-22
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1160
|2 StatID
|b Current Contents - Engineering, Computing and Technology
|d 2023-10-22
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0600
|2 StatID
|b Ebsco Academic Search
|d 2023-10-22
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b ENERG BUILDINGS : 2022
|d 2023-10-22
915 _ _ |a WoS
|0 StatID:(DE-HGF)0113
|2 StatID
|b Science Citation Index Expanded
|d 2023-10-22
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2023-10-22
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b ASC
|d 2023-10-22
915 _ _ |a IF >= 5
|0 StatID:(DE-HGF)9905
|2 StatID
|b ENERG BUILDINGS : 2022
|d 2023-10-22
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2023-10-22
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2023-10-22
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)IEK-10-20170217
|k IEK-10
|l Modellierung von Energiesystemen
|x 0
980 1 _ |a FullTexts
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a I:(DE-Juel1)IEK-10-20170217
980 _ _ |a UNRESTRICTED
981 _ _ |a I:(DE-Juel1)ICE-1-20170217


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21