001024166 001__ 1024166
001024166 005__ 20250204113816.0
001024166 0247_ $$2doi$$a10.1093/pnasnexus/pgae120
001024166 0247_ $$2datacite_doi$$a10.34734/FZJ-2024-01997
001024166 0247_ $$2pmid$$a38577258
001024166 0247_ $$2WOS$$aWOS:001196541200001
001024166 037__ $$aFZJ-2024-01997
001024166 082__ $$a600
001024166 1001_ $$0P:(DE-Juel1)187329$$aCordes, Jakob$$b0$$eCorresponding author
001024166 245__ $$aDimensionless numbers reveal distinct regimes in the structure and dynamics of pedestrian crowds
001024166 260__ $$aOxford$$bOxford University Press$$c2024
001024166 3367_ $$2DRIVER$$aarticle
001024166 3367_ $$2DataCite$$aOutput Types/Journal article
001024166 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1715081735_31030
001024166 3367_ $$2BibTeX$$aARTICLE
001024166 3367_ $$2ORCID$$aJOURNAL_ARTICLE
001024166 3367_ $$00$$2EndNote$$aJournal Article
001024166 520__ $$aIn Fluid Mechanics, dimensionless numbers like the Reynolds number help classify flows. We argue that such a classification is also relevant for crowd flows by putting forward the dimensionless Intrusion and Avoidance numbers, which quantify the intrusions into the pedestrians’ personal spaces and the imminency of the collisions that they face, respectively.Using an extensive dataset, we show that these numbers delineate regimes where distinct variables characterize the crowd's arrangement, namely, Euclidean distances at low Avoidance number and times-to-collision at low Intrusion number. On the basis of these findings, a perturbative expansion of the individual pedestrian dynamics is carried out around the non-interacting state, in quite general terms. Simulations confirm that this expansion performs well in its expected regime of applicability.
001024166 536__ $$0G:(DE-HGF)POF4-5111$$a5111 - Domain-Specific Simulation & Data Life Cycle Labs (SDLs) and Research Groups (POF4-511)$$cPOF4-511$$fPOF IV$$x0
001024166 536__ $$0G:(GEPRIS)446168800$$aDFG project 446168800 - Multi-Agent-Modellierung der Dynamik von dichten Fußgängermengen: Vorhersagen & Verstehen (446168800)$$c446168800$$x1
001024166 588__ $$aDataset connected to CrossRef, Journals: juser.fz-juelich.de
001024166 7001_ $$00000-0002-2054-7973$$aSchadschneider, Andreas$$b1
001024166 7001_ $$00000-0002-8953-3924$$aNicolas, Alexandre$$b2
001024166 773__ $$0PERI:(DE-600)3120703-0$$a10.1093/pnasnexus/pgae120$$gp. pgae120$$n4$$ppgae120$$tPNAS nexus$$v3$$x2752-6542$$y2024
001024166 8564_ $$uhttps://juser.fz-juelich.de/record/1024166/files/Invoice_SOA24LT003220.pdf
001024166 8564_ $$uhttps://juser.fz-juelich.de/record/1024166/files/Invoice_SOA24LT003220.gif?subformat=icon$$xicon
001024166 8564_ $$uhttps://juser.fz-juelich.de/record/1024166/files/Invoice_SOA24LT003220.jpg?subformat=icon-1440$$xicon-1440
001024166 8564_ $$uhttps://juser.fz-juelich.de/record/1024166/files/Invoice_SOA24LT003220.jpg?subformat=icon-180$$xicon-180
001024166 8564_ $$uhttps://juser.fz-juelich.de/record/1024166/files/Invoice_SOA24LT003220.jpg?subformat=icon-640$$xicon-640
001024166 8564_ $$uhttps://juser.fz-juelich.de/record/1024166/files/pgae120.pdf$$yOpenAccess
001024166 8564_ $$uhttps://juser.fz-juelich.de/record/1024166/files/pgae120.gif?subformat=icon$$xicon$$yOpenAccess
001024166 8564_ $$uhttps://juser.fz-juelich.de/record/1024166/files/pgae120.jpg?subformat=icon-1440$$xicon-1440$$yOpenAccess
001024166 8564_ $$uhttps://juser.fz-juelich.de/record/1024166/files/pgae120.jpg?subformat=icon-180$$xicon-180$$yOpenAccess
001024166 8564_ $$uhttps://juser.fz-juelich.de/record/1024166/files/pgae120.jpg?subformat=icon-640$$xicon-640$$yOpenAccess
001024166 8767_ $$8SOA24LT003220$$92024-03-20$$a1200202427$$d2024-04-10$$eAPC$$jZahlung erfolgt
001024166 909CO $$ooai:juser.fz-juelich.de:1024166$$pdnbdelivery$$popenCost$$pVDB$$pdriver$$pOpenAPC$$popen_access$$popenaire
001024166 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)187329$$aForschungszentrum Jülich$$b0$$kFZJ
001024166 9131_ $$0G:(DE-HGF)POF4-511$$1G:(DE-HGF)POF4-510$$2G:(DE-HGF)POF4-500$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-5111$$aDE-HGF$$bKey Technologies$$lEngineering Digital Futures – Supercomputing, Data Management and Information Security for Knowledge and Action$$vEnabling Computational- & Data-Intensive Science and Engineering$$x0
001024166 9141_ $$y2024
001024166 915pc $$0PC:(DE-HGF)0000$$2APC$$aAPC keys set
001024166 915pc $$0PC:(DE-HGF)0003$$2APC$$aDOAJ Journal
001024166 915__ $$0LIC:(DE-HGF)CCBYNC4$$2HGFVOC$$aCreative Commons Attribution-NonCommercial CC BY-NC 4.0
001024166 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
001024166 915__ $$0StatID:(DE-HGF)0561$$2StatID$$aArticle Processing Charges$$d2023-08-31
001024166 915__ $$0StatID:(DE-HGF)0700$$2StatID$$aFees$$d2023-08-31
001024166 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2025-01-07
001024166 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2025-01-07
001024166 915__ $$0StatID:(DE-HGF)0501$$2StatID$$aDBCoverage$$bDOAJ Seal$$d2024-10-31T15:07:51Z
001024166 915__ $$0StatID:(DE-HGF)0500$$2StatID$$aDBCoverage$$bDOAJ$$d2024-10-31T15:07:51Z
001024166 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bDOAJ : Anonymous peer review$$d2024-10-31T15:07:51Z
001024166 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2025-01-07
001024166 915__ $$0StatID:(DE-HGF)0112$$2StatID$$aWoS$$bEmerging Sources Citation Index$$d2025-01-07
001024166 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2025-01-07
001024166 920__ $$lyes
001024166 9201_ $$0I:(DE-Juel1)IAS-7-20180321$$kIAS-7$$lZivile Sicherheitsforschung$$x0
001024166 980__ $$ajournal
001024166 980__ $$aVDB
001024166 980__ $$aUNRESTRICTED
001024166 980__ $$aI:(DE-Juel1)IAS-7-20180321
001024166 980__ $$aAPC
001024166 9801_ $$aAPC
001024166 9801_ $$aFullTexts