001024170 001__ 1024170
001024170 005__ 20250912110137.0
001024170 0247_ $$2doi$$a10.1162/imag_a_00109
001024170 0247_ $$2datacite_doi$$a10.34734/FZJ-2024-02001
001024170 0247_ $$2pmid$$a40800449
001024170 0247_ $$2WOS$$aWOS:001531547100008
001024170 037__ $$aFZJ-2024-02001
001024170 082__ $$a050
001024170 1001_ $$0P:(DE-Juel1)164124$$aRosjat, Nils$$b0$$ufzj
001024170 245__ $$aPrevious motor task performance impacts phase-based EEG resting-state connectivity states
001024170 260__ $$aCambridge, MA$$bMIT Press$$c2024
001024170 3367_ $$2DRIVER$$aarticle
001024170 3367_ $$2DataCite$$aOutput Types/Journal article
001024170 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1718597430_24644
001024170 3367_ $$2BibTeX$$aARTICLE
001024170 3367_ $$2ORCID$$aJOURNAL_ARTICLE
001024170 3367_ $$00$$2EndNote$$aJournal Article
001024170 520__ $$aThe resting human brain cycles through distinct states that can be analyzed using microstate analysis and electroencephalography(EEG) data. This approach classifies multichannel EEG data into spontaneously interchanging microstatesbased on topographic features. These microstates may be valuable biomarkers in neurodegenerative diseasessince they reflect the resting brain’s state. However, microstates do not provide information about the active neuralnetworks during the resting state. This article presents an alternative and complementary method for analyzingresting-stateEEG data and demonstrates its reproducibility and reliability. This method considers cerebral connectivitystates defined by phase synchronization and measured using the corrected imaginary phase-lockingvalue (ciPLV)based on source-reconstructedEEG recordings. We analyzed resting-stateEEG data from young, healthy participantsacquired on five consecutive days before and after a motor task. We show that our data reproduce microstatespreviously reported. Further, we reveal four stable topographic patterns over the multiple recording sessions in thesource connectivity space. While the classical microstates were unaffected by a preceding motor task, the connectivitystates were altered, reflecting the suppression of frontal activity in the post-movementresting state.
001024170 536__ $$0G:(DE-HGF)POF4-5252$$a5252 - Brain Dysfunction and Plasticity (POF4-525)$$cPOF4-525$$fPOF IV$$x0
001024170 536__ $$0G:(GEPRIS)431549029$$aDFG project 431549029 - SFB 1451: Schlüsselmechanismen normaler und krankheitsbedingt gestörter motorischer Kontrolle (431549029)$$c431549029$$x1
001024170 588__ $$aDataset connected to CrossRef, Journals: juser.fz-juelich.de
001024170 7001_ $$0P:(DE-Juel1)173028$$aHommelsen, Maximilian$$b1
001024170 7001_ $$0P:(DE-Juel1)131720$$aFink, Gereon R.$$b2$$ufzj
001024170 7001_ $$0P:(DE-Juel1)162297$$aDaun, Silvia$$b3$$eCorresponding author$$ufzj
001024170 773__ $$0PERI:(DE-600)3167925-0$$a10.1162/imag_a_00109$$gVol. 2, p. 1 - 16$$p1 - 16$$tImaging neuroscience$$v2$$x2837-6056$$y2024
001024170 8564_ $$uhttps://juser.fz-juelich.de/record/1024170/files/APC600514114.pdf
001024170 8564_ $$uhttps://juser.fz-juelich.de/record/1024170/files/APC600514114.gif?subformat=icon$$xicon
001024170 8564_ $$uhttps://juser.fz-juelich.de/record/1024170/files/APC600514114.jpg?subformat=icon-1440$$xicon-1440
001024170 8564_ $$uhttps://juser.fz-juelich.de/record/1024170/files/APC600514114.jpg?subformat=icon-180$$xicon-180
001024170 8564_ $$uhttps://juser.fz-juelich.de/record/1024170/files/APC600514114.jpg?subformat=icon-640$$xicon-640
001024170 8564_ $$uhttps://juser.fz-juelich.de/record/1024170/files/PDF.pdf$$yOpenAccess
001024170 8564_ $$uhttps://juser.fz-juelich.de/record/1024170/files/PDF.gif?subformat=icon$$xicon$$yOpenAccess
001024170 8564_ $$uhttps://juser.fz-juelich.de/record/1024170/files/PDF.jpg?subformat=icon-1440$$xicon-1440$$yOpenAccess
001024170 8564_ $$uhttps://juser.fz-juelich.de/record/1024170/files/PDF.jpg?subformat=icon-180$$xicon-180$$yOpenAccess
001024170 8564_ $$uhttps://juser.fz-juelich.de/record/1024170/files/PDF.jpg?subformat=icon-640$$xicon-640$$yOpenAccess
001024170 8767_ $$8APC600514114$$92024-03-18$$a1200203498$$d2024-05-17$$eAPC$$jZahlung erfolgt$$z1600 USD
001024170 909CO $$ooai:juser.fz-juelich.de:1024170$$pdnbdelivery$$popenCost$$pVDB$$pdriver$$pOpenAPC$$popen_access$$popenaire
001024170 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)164124$$aForschungszentrum Jülich$$b0$$kFZJ
001024170 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)131720$$aForschungszentrum Jülich$$b2$$kFZJ
001024170 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)162297$$aForschungszentrum Jülich$$b3$$kFZJ
001024170 9131_ $$0G:(DE-HGF)POF4-525$$1G:(DE-HGF)POF4-520$$2G:(DE-HGF)POF4-500$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-5252$$aDE-HGF$$bKey Technologies$$lNatural, Artificial and Cognitive Information Processing$$vDecoding Brain Organization and Dysfunction$$x0
001024170 9141_ $$y2024
001024170 915pc $$0PC:(DE-HGF)0000$$2APC$$aAPC keys set
001024170 915pc $$0PC:(DE-HGF)0001$$2APC$$aLocal Funding
001024170 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
001024170 915__ $$0LIC:(DE-HGF)CCBY4$$2HGFVOC$$aCreative Commons Attribution CC BY 4.0
001024170 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2025-01-02
001024170 915__ $$0StatID:(DE-HGF)0501$$2StatID$$aDBCoverage$$bDOAJ Seal$$d2024-09-26T09:40:26Z
001024170 915__ $$0StatID:(DE-HGF)0500$$2StatID$$aDBCoverage$$bDOAJ$$d2024-09-26T09:40:26Z
001024170 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bDOAJ : Anonymous peer review$$d2024-09-26T09:40:26Z
001024170 920__ $$lyes
001024170 9201_ $$0I:(DE-Juel1)INM-3-20090406$$kINM-3$$lKognitive Neurowissenschaften$$x0
001024170 980__ $$ajournal
001024170 980__ $$aVDB
001024170 980__ $$aUNRESTRICTED
001024170 980__ $$aI:(DE-Juel1)INM-3-20090406
001024170 980__ $$aAPC
001024170 9801_ $$aAPC
001024170 9801_ $$aFullTexts