001024255 001__ 1024255
001024255 005__ 20250203103113.0
001024255 0247_ $$2doi$$a10.1101/2024.03.11.583969
001024255 0247_ $$2datacite_doi$$a10.34734/FZJ-2024-02062
001024255 037__ $$aFZJ-2024-02062
001024255 1001_ $$00000-0003-3650-5476$$aWang, Yezhou$$b0
001024255 245__ $$aMULTIMODAL GRADIENTS UNIFY LOCAL AND GLOBAL CORTICAL ORGANIZATION
001024255 260__ $$c2024
001024255 3367_ $$0PUB:(DE-HGF)25$$2PUB:(DE-HGF)$$aPreprint$$bpreprint$$mpreprint$$s1712119848_21538
001024255 3367_ $$2ORCID$$aWORKING_PAPER
001024255 3367_ $$028$$2EndNote$$aElectronic Article
001024255 3367_ $$2DRIVER$$apreprint
001024255 3367_ $$2BibTeX$$aARTICLE
001024255 3367_ $$2DataCite$$aOutput Types/Working Paper
001024255 520__ $$aSpecialization of brain areas and subregions, as well as their integration into large-scale networks are key principles in neuroscience. Consolidating both local and global cortical organization, however, remains challenging. Our study developed a new approach to map global cortex-wise similarities of microstructure, structural connectivity, and functional interactions, and integrate these patterns with maps of cortical arealization. Our analysis combined repeated high-field in-vivo 7 tesla (7T) Magnetic Resonance Imaging (MRI) data collected in 10 healthy adults with a recently introduced probabilistic post-mortem atlas of cortical cytoarchitecture. We obtained multimodal eigenvectors describing cortex-wide gradients at the level of microstructural covariance, structural connectivity, and intrinsic functional interactions, and then assessed inter- and intra-area differences in cortex-wide embedding based on these multimodal eigenvectors. Inter-area similarities followed a canonical sensory-fugal gradient, with primary sensorimotor cortex being the most distinctive from all other areas, while paralimbic regions were least distinctive. This pattern largely corresponded to functional connectivity variations across different tasks collected in the same participants, suggesting that the degree of global cortical integration mirrors the functional diversity of brain areas across contexts. When studying heterogeneity within areas, we did not observe a similar relationship, despite overall higher heterogeneity in association cortices relative to paralimbic and idiotypic cortices. The results were replicated in a different dataset. Our findings highlight a close coupling between cortical arealization and global cortical motifs in shaping specialized versus integrative human brain function.
001024255 536__ $$0G:(DE-HGF)POF4-5251$$a5251 - Multilevel Brain Organization and Variability (POF4-525)$$cPOF4-525$$fPOF IV$$x0
001024255 536__ $$0G:(DE-HGF)InterLabs-0015$$aHIBALL - Helmholtz International BigBrain Analytics and Learning Laboratory (HIBALL) (InterLabs-0015)$$cInterLabs-0015$$x1
001024255 536__ $$0G:(EU-Grant)101147319$$aEBRAINS 2.0 - EBRAINS 2.0: A Research Infrastructure to Advance Neuroscience and Brain Health (101147319)$$c101147319$$fHORIZON-INFRA-2022-SERV-B-01$$x2
001024255 588__ $$aDataset connected to CrossRef
001024255 7001_ $$0P:(DE-HGF)0$$aEichert, Nicole$$b1
001024255 7001_ $$0P:(DE-Juel1)187055$$aPaquola, Casey$$b2$$ufzj
001024255 7001_ $$0P:(DE-HGF)0$$aRodriguez-Cruces, Raul$$b3
001024255 7001_ $$0P:(DE-HGF)0$$aDeKraker, Jordan$$b4
001024255 7001_ $$0P:(DE-HGF)0$$aRoyer, Jessica$$b5
001024255 7001_ $$aCabalo, Donna Gift$$b6
001024255 7001_ $$0P:(DE-HGF)0$$aAuer, Hans$$b7
001024255 7001_ $$0P:(DE-HGF)0$$aNgo, Alexander$$b8
001024255 7001_ $$0P:(DE-HGF)0$$aLeppert, Ilana$$b9
001024255 7001_ $$0P:(DE-HGF)0$$aTardif, Christine L.$$b10
001024255 7001_ $$0P:(DE-HGF)0$$aRudko, David A.$$b11
001024255 7001_ $$0P:(DE-Juel1)131631$$aAmunts, Katrin$$b12$$ufzj
001024255 7001_ $$0P:(DE-HGF)0$$aSmallwood, Jonathan$$b13
001024255 7001_ $$0P:(DE-HGF)0$$aEvans, Alan C.$$b14
001024255 7001_ $$00000-0001-9256-6041$$aBernhardt, Boris C.$$b15$$eCorresponding author
001024255 773__ $$a10.1101/2024.03.11.583969
001024255 8564_ $$uhttps://juser.fz-juelich.de/record/1024255/files/2024.03.11.583969v1.full.pdf$$yOpenAccess
001024255 8564_ $$uhttps://juser.fz-juelich.de/record/1024255/files/2024.03.11.583969v1.full.gif?subformat=icon$$xicon$$yOpenAccess
001024255 8564_ $$uhttps://juser.fz-juelich.de/record/1024255/files/2024.03.11.583969v1.full.jpg?subformat=icon-1440$$xicon-1440$$yOpenAccess
001024255 8564_ $$uhttps://juser.fz-juelich.de/record/1024255/files/2024.03.11.583969v1.full.jpg?subformat=icon-180$$xicon-180$$yOpenAccess
001024255 8564_ $$uhttps://juser.fz-juelich.de/record/1024255/files/2024.03.11.583969v1.full.jpg?subformat=icon-640$$xicon-640$$yOpenAccess
001024255 909CO $$ooai:juser.fz-juelich.de:1024255$$pdnbdelivery$$pec_fundedresources$$pVDB$$pdriver$$popen_access$$popenaire
001024255 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)187055$$aForschungszentrum Jülich$$b2$$kFZJ
001024255 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)131631$$aForschungszentrum Jülich$$b12$$kFZJ
001024255 9131_ $$0G:(DE-HGF)POF4-525$$1G:(DE-HGF)POF4-520$$2G:(DE-HGF)POF4-500$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-5251$$aDE-HGF$$bKey Technologies$$lNatural, Artificial and Cognitive Information Processing$$vDecoding Brain Organization and Dysfunction$$x0
001024255 9141_ $$y2024
001024255 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
001024255 915__ $$0LIC:(DE-HGF)CCBYNC4$$2HGFVOC$$aCreative Commons Attribution-NonCommercial CC BY-NC 4.0
001024255 9201_ $$0I:(DE-Juel1)INM-1-20090406$$kINM-1$$lStrukturelle und funktionelle Organisation des Gehirns$$x0
001024255 9201_ $$0I:(DE-Juel1)INM-7-20090406$$kINM-7$$lGehirn & Verhalten$$x1
001024255 980__ $$apreprint
001024255 980__ $$aVDB
001024255 980__ $$aI:(DE-Juel1)INM-1-20090406
001024255 980__ $$aI:(DE-Juel1)INM-7-20090406
001024255 980__ $$aUNRESTRICTED
001024255 9801_ $$aFullTexts