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ABSTRACT 
Specialization of brain areas and subregions, as well as their integration into large-scale networks 

are key principles in neuroscience. Consolidating both local and global cortical organization, 

however, remains challenging. Our study developed a new approach to map global cortex-wise 

similarities of microstructure, structural connectivity, and functional interactions, and integrate 

these patterns with maps of cortical arealization. Our analysis combined repeated high-field in-

vivo 7 tesla (7T) Magnetic Resonance Imaging (MRI) data collected in 10 healthy adults with a 

recently introduced probabilistic post-mortem atlas of cortical cytoarchitecture. We obtained 

multimodal eigenvectors describing cortex-wide gradients at the level of microstructural 

covariance, structural connectivity, and intrinsic functional interactions, and then assessed inter- 

and intra-area differences in cortex-wide embedding based on these multimodal eigenvectors. 

Inter-area similarities followed a canonical sensory-fugal gradient, with primary sensorimotor 

cortex being the most distinctive from all other areas, while paralimbic regions were least 

distinctive. This pattern largely corresponded to functional connectivity variations across different 

tasks collected in the same participants, suggesting that the degree of global cortical integration 

mirrors the functional diversity of brain areas across contexts. When studying heterogeneity within 

areas, we did not observe a similar relationship, despite overall higher heterogeneity in association 

cortices relative to paralimbic and idiotypic cortices. The results were replicated in a different 

dataset. Our findings highlight a close coupling between cortical arealization and global cortical 

motifs in shaping specialized versus integrative human brain function. 

 

SIGNIFICANCE 
Our work situates cytoarchitecture-derived cortical areas within multimodal gradients of cortical 

microstructure, connectivity, and function derived from high-definition multimodal neuroimaging. 

We demonstrated that primary sensory and motor areas show most distinctive gradient profiles 

while paralimbic areas were least distinctive, overall recapitulating a sensory-fugal axis. This axis 

was shown to relate to the diversity of cortical areas across different functional contexts, and 

findings could be replicated across an independent dataset. Overall, our work shows how 

frameworks of cortical arealization and macroscale gradients converge in shaping functional 

specialization versus integration in the human brain.  
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INTRODUCTION 

Understanding how the spatial organization of the human brain gives rise to cognitive functions is 

a challenging, yet fundamental goal for neuroscience (1). Complex brain networks at multiple 

scales arise from overlapping variations in cortical microstructure, function, and connectivity (2, 

3). This network involves both global integration and local specialization of cortical regions, 

giving rise to distributed functional communities that enable complex computations (4-7). Global 

integration prominently manifests within higher-order systems, notably the transmodal association 

cortex, which engages in increasingly abstract and self-generated cognition (8-11). In contrast, 

local functional specialization is more frequent in sensory and motor regions that interact more 

closely with the here and now (6, 8, 12, 13). The interplay between contrasting local and global 

motifs contributes to the hierarchical organization of the brain, underpinning both modular and 

integrative information processing across a diverse array of cognitive functions. 

Mapping structural and functional descriptors to define discrete brain areas is essential for 

understanding hierarchical brain organization at macroscale. Constructing precise maps of cortical 

areas has been a long-standing objective in neuroanatomy, as it reduces complexity and bias when 

studying brain regions and inter-regional relationships (3, 14-16). Cytoarchitecture, encompassing 

the arrangement, distribution, composition, and layering of cells, has emerged as a gold standard 

to defined areas (17). Microstructural insight from this post-mortem approach enhances our 

understanding of connectivity patterns and can illuminate the role of a region in cortical 

functioning. However, the microstructural patterns in the human brain, and their relation to cortical 

function, remain challenging to address in a systematic manner due to the constraints of invasive 

techniques. Recently, the Julich-Brain atlas, a 3D probabilistic atlas of human brain 

cytoarchitecture (16) has been made available. This resource offers valuable opportunities for 

examining both the micro- and macro-organization of the human brain, and for contrasting local 

specialization with global integration. It can, thus, help to guide investigations of structure-

function association across the cortical tapestry within reliably defined cortical subunits.  

Gradual changes in cortical architecture have been described as well, even in early work (18). 

While atlas of cortical areas discretize the brain into non-overlapping constituents, recent advances 

emphasize a more complex organisation of the cerebral cortex, which goes beyond as simple 

subdivision into cortical areas, and emphasizes the role of cytoarchitectonic changes within an area 

(e.g., ocular dominance columns, border tuft and fringe area in the visual cortex), and changes 

occurring at larger scale, for example between areas (17). Moreover, recent neuroimaging has also 

highlighted utility of complementary descriptions of macroscale cortical organization based on 

eigenvector decomposition of cortex-wide similarities (commonly known as cortical gradients 

(19-21)). These gradients differentiate cortical systems in an ordered and continuous manner, and 

can be applied to different types of neural data. Notably, converging hierarchical trends, spanning 

from sensory to transmodal regions was observed across microstructural (7, 20, 22-24) and 

functional gradients (19, 25). These multiple dimensions can effectively capture nuanced patterns 

of cortical organization (23), and may provide synergy in understanding subregional heterogeneity 

and functional multiplicity of different cortical areas (26). More broadly, gradient mapping 

techniques have robustly differentiated transmodal from primary sensory/motor regions, mirroring 

their hierarchical contributions to cognition. In effect, such gradients have been found to align with 

functionally relevant properties including disproportionate expansion during primate evolution 

(27-29), reduced heritability and increased experience dependent plasticity (30, 31), increased 

network idiosyncrasy (32), and the balance of internal-vs-externally oriented processing (33-35).  
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Local versus global organization can be interrogated at the level of microstructure (e.g., 

cytoarchitecture), connectivity and function. In this context, MRI serves as an ideal technique to 

bridge structure and function across varying spatial scales (36, 37). Several contrasts have been 

proposed to index cortical microstructure and myelination, including T1 relaxometry (38, 39). 

These techniques have shown differences in intensity between primary sensory systems with 

marked myelination and clearly visible laminae, and heteromodal as well as paralimbic cortices 

with reduced myelination and less pronounced laminar differentiation (20, 40, 41). When assessing 

structural connectivity using diffusion MRI tractographic techniques, several studies also pointed 

to marked variations in connectivity profiles across cortical areas (42, 43). Notably, reports have 

suggested differences in the organization of region-specific connections between anterior and 

posterior brain regions, and between sensory/motor systems and the rest of the brain (7, 44, 45).  

Finally, the advent of resting-state functional MRI (rs-fMRI) has led to a surge in studies 

interrogating the connectivity profiles of specific regions (46-48), and delineating macroscale 

brain networks (4, 49-52).  

Collectively, these findings underscore the versatility of MRI and its potential to conduct structure-

function studies in the human brain across multiple scales. Notably, while conventional MRI 

acquisitions at field strengths of 3 tesla (3T) and below may have limitations in terms of resolution 

and signal, recent in-vivo studies that have moved  to high fields of 7T and above have benefitted 

from enhanced resolution, sensitivity, and biological specificity (53-58). In addition, imaging 

paradigms that combine multiple MRI datasets acquired across different scanning sessions in a 

given individual have been shown to further increase precision for the analysis of microstructure 

(59), connectivity (60, 61), and function (60, 62). Several of such “precision neuroimaging” 

datasets have already led to an advanced characterization of functional systems (63, 64) or fostered 

enhanced microstructural modelling, but previous precision imaging datasets were either 

prioritizing functional or structural imaging acquisitions, and rarely both in the same subjects. 

Moreover, prior precision imaging investigations were mainly carried out at 3T. In this study, we 

expand this work by leveraging a recently introduced precision neuroimaging (PNI) dataset, which 

combines repeated high-resolution structural and functional acquisitions at 7T, offering an 

opportunity to interrogate cortical organization in the living human brain with high sensitivity and 

specificity.  

The current work examined the interplay of local cortical arealization and global integration. 

Leveraging probabilistic cytoarchitectonic maps of the Julich-Brain atlas (16), we subdivided the 

cortex into 228 areas. In those, we profiled microstructural, structural, and functional gradients 

derived from repeated 7T MRI scans. We then examined how multimodal gradient profiles 

differed across areas. As local-global cortical organization is presumably tied to cognitive 

functional architecture, we cross-referenced our maps to multiple fMRI tasks conducted in the 

same participants, and in particular studied the relation between inter-area gradient profiles and 

functional diversity across different tasks acquired in the same subjects. By integrating measures 

of cortical cytoarchitecture with multimodal high-definition MRI, our work sheds light on local-

global cortical organization and advances our understanding of cortical structure-function 

relationships.  
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RESULTS 

Bridging local and global cortical organization  

We constructed high-resolution cortex-wide connectomes, encompassing microstructural profile 

covariance (MPC) (20), structural connectivity (SC) (65), and functional connectivity (FC) (19, 

66), in 10 healthy adults who underwent three repeated multimodal MRI scans at 7T (Figure 1A). 

We estimated connectome eigenvectors that characterized spatial gradients of MPC, SC, and FC. 

We focused on the first five gradients across modalities (MPC: 31%; SC: 18%; FC: 25%). In line 

with prior work (20), the principal MPC gradient was anchored on one end by primary sensory 

areas and on the other end by paralimbic regions. The principal SC gradient exhibited anterior-

posterior axis, clearly dividing the cortex into two parts bounded by sensorimotor areas, as reported 

previously (67). The first FC gradient differentiated sensorimotor cortices and default mode 

network, recapitulating earlier work (19, 66). Other gradients were also in keeping with prior 

reports (Figure 1A) (20, 65-67). Finally, gradients were averaged in areas derived from the Julich-

Brain atlas (Figure 1B), to generate an area-wise gradient profile matrix.  

  

Figure 1. Integration of global cortical gradients with cortical arealization. (A) Generation of multimodal 

cortical gradients. Cortex-wide connectomes were constructed from microstructural profile covariance (MPC) (20), 
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structural connectivity (SC) (65, 67), and functional connectivity (FC) (19, 66) at a vertex-level based on repeated 7T 

MRI. We applied non-linear dimensionality reduction techniques (68) to each connectome and aggregated the first 

five eigenvectors/gradients. (B) Cortical arealization: Julich-Brain Atlas. Probabilistic area definitions were 

derived from the Julich-Brain atlas (16), a post-mortem cytoarchitectonic atlas based on the mapping of areas ten 

postmortem brains, and their superimposition in MNI space (C) Area-wise gradient profiling. We averaged vertex-

wise gradients in each of the 228 areas, producing area-specific multimodal gradient profiles. Left panel: the resulting 

gradient profiles located in the middle and at the two ends of the main axis were visualized in spider plots. Middle 

panel: the multimodal gradient profiles. Right panel: the first principal component from the multimodal gradient 

profiles. 

 

Cortical patterns of local-global integration   

We examined the similarity and differences of gradient profiles across areas. To this end, we first 

conducted principal component analysis (PCA) on the multimodal gradient profiles. This 

multimodal gradient arranges cortical areas in terms of the similarity or their gradient values and 

followed a sensory-fugal axis in multimodal gradient profiles, anchored on prefrontal/cingulate 

regions on the one end and central/occipital regions on the other end, integrating salient features 

of its constituents (i.e., the individual MPC, SC, and FC gradients) in a synoptic manner (Figure 

1C).  

To further quantify area-to-area differences, we computed an inter-area cosine distance matrix 

(Figure 2A). The mean value of each row in this matrix indicates the overall dissimilarity of a 

given area from all other areas in terms of the multimodal gradient profiles. To identify cortical 

areas with significantly higher/lower dissimilarity compared to all other areas, we conducted 

spatial permutation tests (1000 permutations) that randomly rotated the Julich-Brain atlas on a 

sphere (69). We found significant and highest global dissimilarity in areas of the sensorimotor 

cortex (pspin<0.05, false discovery rate (FDR) correction; Figure 2A), indicating that these areas 

are the most unique across the cortex in terms of their multidimensional gradient profiles. 

Conversely, we observed the lowest dissimilarity in insular and fronto-temporal regions after 

spatial permutation tests (pspin<0.05, FDR correction).  

To gain a deeper understanding of these patterns, we investigated the distribution of global 

dissimilarity across four cortical hierarchical levels derived from a prior taxonomy of the primate 

brain proposed by Mesulam (70). Using a two-sample t-test, we compared global dissimilarity 

between each pair of cortical hierarchical levels (i.e., paralimbic, heteromodal, unimodal and 

idiotypic). The results revealed that the idiotypic system had the highest global dissimilarity 

compared to other systems (pspin<0.05, FDR correction, Figure 2B). In contrast, paralimbic 

systems showed lowest global dissimilarity (pspin<0.05, FDR correction), aligning with prior 

findings. To further explore associations between global dissimilarity and cortical microstructure, 

we generated a MPC matrix of histological data obtained from the BigBrain dataset (71), a 3D 

reconstruction of post-mortem human brain histology, and estimated its principal gradient. This 

gradient has previously been shown to closely recapitulate Mesulam’s taxonomy of cortical 

hierarchical organization. In effect, we also observed a significant correlation between the 

histological gradient and global dissimilarity (rho=-0.61, pspin<0.001). 

To examine cortical similarities using an alternative approach, we also performed hierarchical 

clustering on cortical similarity matrices and found similar results, providing four robust clusters 

recapitulating sensory-fugal hierarchies (Figure S1, Supplementary Materials). Moreover, we 

investigated intra-area heterogeneity at the vertex level. Here, we calculated the cosine distance 

between the gradient profile of each cortical vertex and the mean gradient profile of the area to 
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Figure 2. Inter-area heterogeneity. (A) Global dissimilarity patterns. We calculated the cosine distance between 

each pair of cortical areas and computed the mean value for each area. To identify cortical areas with the highest and 

lowest global dissimilarity, we conducted 1000 permutation tests (69). Regions with significantly higher global 

dissimilarity compared to other areas after applying FDR correction were highlighted using black boundaries. (B) 
Global dissimilarity in cortical hierarchies and associations to histological gradient. The left panel illustrates the 

distribution of global dissimilarity across four cortical hierarchies. To examine differences between each cortical 

hierarchical level, two-sample t-tests were conducted with FDR correction. To explore associations with the 

histological gradient, Spearman’s correlation coefficients were computed, and p-values corrected using spin 

permutation tests (69). 

 

which it belongs (Figure S2A). We found that intra-area heterogeneity was considerably lower 

compared to inter-area heterogeneity. Comparing hierarchical levels, we did not observe the same 

relationship as for inter-area heterogeneity. In particular, intra-area heterogeneity was higher in 

heteromodal and unimodal association systems, compared to idiotypic and paralimbic regions 

(pspin<0.05, FDR correction) there was no significant association to the histological gradient 

derived from BigBrain (rho=-0.17, pspin=0.12; see Figure S2 and Supplementary Materials).   

 

Associations to functional diversity across task states 

The cortical layout is intricately linked to cognition (20, 72). To investigate how functional 

connectivity patterns change across diverse cognitive states, we administered nine different fMRI 

tasks, including episodic memory encoding and retrieval, pattern separation encoding and retrieval, 

semantic retrieval, and four passive movie watching paradigms in the same participants at 7T. We 

constructed functional connectivity for all states and calculated the cosine distance between the 

corresponding whole brain functional connectivity matrices to estimate cross-state diversity for 

each area (Figure 3A). We observed highest functional variability in the medial temporal lobe and 

orbitofrontal cortex, while the medial frontal lobe and primary sensory cortex had low variability 

(Figure 3B). To further explore how this functional variability relates to cortical organization, we 
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assessed associations between the cross-state diversity map and inter-area dissimilarity. This was 

done by computing Spearman’s correlation coefficient and correcting p-values using 1,000 spin 

permutation tests. Notably, we identified a marked correlation between cross-state diversity and 

global dissimilarity (rho=-0.71, pspin<0.001; Figure 3B). To control for potential influences from 

tSNR, we performed partial correlation analysis with tSNR as a covariate and found consistent 

results (pspin<0.001). Again, we only found weak, and marginally significant association with local 

dissimilarity (rho=-0.19, pspin=0.065; Figure S2). 

 

Figure 3. Associations to cross-state functional diversity. (A) Cross-state diversity calculations. The FC matrices 

were generated using time series data obtained from for nine tasks fMRI sessions in the same subjects. This was 

followed by the estimation of cosine distances across different tasks. This process resulted in a cross-state diversity 

matrix of dimensions. To quantify the cross-state diversity for the first vertex of all tasks, the average of each column 

in this matrix was computed. (B) Associations with global dissimilarity.  By repeating the procedures outlined in 

Panel A for each vertex and subsequently mapping the results to areas, we created an area-wise cross-state diversity 

map. Spearman’s correlation coefficient was computed, and p-values were corrected using spin permutation tests. 

 

Robustness with respect to analysis parameters  

To assess robustness of our findings with respect to analysis parameters, we recalculated gradients, 

gradient profiles, global and local dissimilarity for each modality using different thresholds of the 

connectivity matrix (50%, 60%, 70%, 80%, 90%). Correlations between global and local 

dissimilarity derived from gradient profiles with different thresholds were assessed, revealing 

consistent results (Figure S3). Moreover, we investigated the impact of varying the number of 

gradients within each modality, ranging from three to seven. Global and local dissimilarity was 

estimated, and consistent results were observed across different numbers (Figure S3). 
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Figure 4. Reliability analysis at the single subject level. (A) Individual level correlations. For each of the 10 

subjects, we generated gradient profiles and global dissimilarity. Associations between individual global dissimilarity 

and histological gradient, as well as cross-state diversity were examined using Spearman’s correlation coefficients. 

(B) Reliability analysis. Associations between individual global dissimilarity were estimated using Pearson’s 

correlation coefficient. Distributions of rho values between global dissimilarity and histological gradient (mean±SD 

of rho values=-0.58±0.047), and with cross-state diversity were examined (mean±SD of rho values=-0.53±0.067). 

Abbreviation: MP2RAGE, magnetization-prepared 2 rapid gradient echo. 

 

Reliability at the single subject level  

We assessed our findings at each of the 10 individual participants that were scanned at 7T. Similar 

results were found across participants, including gradient profile matrices and global dissimilarity 

(Figure 4A). Moreover, we observed marked negative correlations between global dissimilarity 
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and the histological gradient (rho=-0.58±0.047, ranged from -0.63 to -0.49, all pspin<0.001), and 

between global dissimilarity and cross-state diversity (rho=-0.53±0.067, ranged from -0.64 to -

0.45, all pspin<0.001). Global dissimilarity across subjects were highly correlated (r=0.90±0.008; 

Figure 4B).  

 

Replication at 3T 

To ensure the reproducibility of our findings, we conducted a replication analysis involving an 

independent sample of 50 healthy young adults (age: 29.54±5.62 years, 23 females) scanned at 3T 

(67). Results from the replication sample revealed consistent findings, with similar multimodal 

gradients, gradient profiles, and inter-area heterogeneity (Figure S4A-B). Notably, associations 

with histological gradients (rho=-0.41, pspin<0.001) and cross-state diversity (rho=-0.62, 

pspin<0.001) remained consistent. Again, we observed only a marginal association between local 

dissimilarity and cross-state diversity (rho=-0.11, pspin>0.1; Figure S4C), with no significant 

correlation found for histological gradients.  

 

DISCUSSION 

Functional specialization and integration are two cornerstones of neural organization (73, 74). 

While specialization relates to distinctive neural behavior across different contexts (75),  functional 

integration emphasizes the shared influence among regions, ultimately contributing to coherent 

experiences and behavior (75, 76). The present study combined multimodal MRI acquisitions with 

gold standard descriptions of cortical cytoarchitecture (16), in order to identify the similarity and 

dissociation of global cortical fingerprints across areas. Vertex-wise multimodal connectomes 

were constructed from high-field 7T MRI data, and cortical gradients estimated, aligning with 

those described in prior studies (19, 20, 65). We noted higher global dissimilarity in sensorimotor 

cortices and lower global dissimilarity in the transmodal system, indicating the distinctiveness of 

the primary sensory cortex which supported its functional specialization. Significant associations 

between cross-state functional variability and inter-area heterogeneity were identified, indicating 

a link between global cortical motifs and functional diversity across different task contexts. These 

findings suggest a sensory-paralimbic differentiation in cortical gradient fingerprints, providing 

insights into neural motifs contributing to specialized and integrative brain functions.  

The availability of multimodal neuroimaging data offers opportunities for examining brain 

organization across different spatial scales (36, 37, 77). However, investigations into principles 

governing functional segregation versus specialization are often constrained by the resolution of 

in-vivo MRI (76). To address this limitation, our study leveraged a high-field in-vivo 7T MRI 

dataset that features high signal strength, high spatial resolution, and the availability of several 

modalities (78). Data were acquired across multiple time points to further improve MR signal-to-

noise ratio and contrast-to-noise ratio, thereby enhancing reliability and robustness (60-64). To 

integrate descriptions of segregation and integration, we utilized a gold standard atlas derived from 

post-mortem histological data to finely partition the brain into distinct regions based on 

cytoarchitecture (16) and combined this with dimensional gradient descriptions that situate each 

cortical area into the larger tapestry of cortical microstructure, connectivity, and function (19). 

Given that the gradient profiles in our study represent vectors in a multidimensional space, we then 

measured the distance between all cortical areas using a cosine distance metric. Interestingly, we 
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observed an overarching pattern of cortical global dissimilarity, with one end featuring sensory 

and motor cortices featuring the highest global dissimilarity and the other end encompassing 

heteromodal and paralimbic areas in the transmodal apex. This suggests that functional 

specialization in primary sensorimotor areas is accompanied by a more distinctive organization 

pattern. Overall, the axis of global dissimilarity is consistent with the gradients previously reported 

for single modalities that are, especially at the level of function and microstructure, also anchored 

in primary systems on the one end, and more heteromodal and paralimbic regions on the other end 

(19, 20). Tract-tracing and neuroimaging experiments have documented that primary sensory and 

motor cortices host more short-range cortico-cortical connections than transmodal systems (66), 

and these regions also tend to have a higher coupling between microstructure and function, and 

between structural connectivity and function (30). Such findings are potentially in support of their 

more specialized functional profiles (66, 79). Notably, the pattern of cortical organization within 

the limbic system closely aligns with that of other cortical areas, extending previous findings 

derived from single modalities (19, 20, 79, 80). This supports the integrative role of  the limbic 

system, which may enable it to participate  in various cognitive processes (81).  

Distance-dependence theory suggests that regions in close proximity are more likely to exhibit 

inter-connections (82, 83). Moreover, cross-species research indicates that areas sharing similar 

microstructural and neurobiological characteristics tend to be interconnected (84-87). These 

findings support the overarching idea that adjacent regions with short-range connections often 

share gene expression and microstructural similarities, contributing to their specialized functional 

roles. Conversely, while nearby neurons are expected to share similar microstructural properties 

when extending smooth macroscale topography to the microscale (88), prior electrophysiological 

experiments in various mammalian brain regions have shown that nearby neurons can exhibit 

disparate response properties (89-93). Thus, our study examined the intra-area heterogeneity of 

brain organization to probe whether individual functional units (i.e. populations of neurons within 

a voxel) are more consistent or more unique from their neighbours. Consistent with our 

expectations, overall intra -area variability was relatively low when compared with variations 

between areas, confirming the utility of parcellations as a concept reflected in most atlases, more 

generally.   

We also observed notable subregional variations within areas, and these were most pronounced in 

uni- as well as heteromodal association cortices, in line with their more integrative functional role, 

compared to primary sensory and motor areas.  Contrary to these inter-area findings, we did not 

observe significant trends or associations at the level of intra-area variations to the functional and 

microstructural measures of cortical hierarchy investigated in the study. By nevertheless showing 

an overall increased intra-area heterogeneity in association cortices, our findings may support the 

vital role of association cortex in information integration (7). We speculate that intraregional 

heterogeneity can  support the processing and integration of inputs across a large cortical territory 

(94). That is, for disparate types of information to be integrated, they must at minimum be present 

in the same brain regions. Moreover, these findings are also aligned with the tethering hypothesis 

of cortical patterning, where a disproportionate enlargement of uni- and heteromodal systems 

during human evolution and the progressive decrease of genetically mediated signalling gradients 

may have contributed to their higher local dissimilarity and relative structure-function decoupling 

(27, 95).  

To tie our findings to cortex-wide functional differences, we assessed spatial correlations between 

inter-area dissimilarity as well as functional diversity across different fMRI tasks obtained in the 
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same subjects. The observed negative correlation between global dissimilarity and cross-state 

diversity suggests that globally more specialized regions, such as sensorimotor and visual cortices, 

also exhibit more stable functional connectivity patterns across various tasks. A recent study 

reported that functional connectivity in somatomotor cortex increased with age during childhood 

through adolescence, whereas it declined in association cortices, reinforcing the differentiation of 

sensorimotor and association systems in typical development (96). These findings support the 

existence of a sensorimotor-association axis of cortical organization (8, 19), and may explain the 

observed higher stability of functional connectivity in sensorimotor cortex across tasks. On the 

other hand, paralimbic areas presented with least distinctiveness compared to other cortical regions, 

and also showed the highest cross-state diversity in functional connectivity. This may be attributed 

to the involvement of these regions across a diverse array of cognitive and affective processes (81, 

97), and prior findings suggesting overall increased signalling variability in these systems (98). 

Collectively, these findings suggest that the heterogeneity in global cortical motifs across different 

regions is also reflected in their diverse participation across different functional contexts.  

A series of robustness analyses, exploring the influence of thresholds for gradient estimation and 

the number of gradients, yielded similar results, suggesting that our analyses was not affected by 

variations in specific analysis parameters. Moreover, we observed consistent findings at the level 

of individual participants and could replicate our findings using a completely independent dataset 

scanned at 3T. It is nevertheless essential to note that there may be additional sources of inter-

participant variability and cross-scale effects that could be further explored in future studies (99). 

Notably, the probabilistic atlas utilized in this study to define cortical areas did not cover the entire 

cortex; some cortical areas remain undefined, presenting a limitation. However, this limitation is 

anticipated to be resolved with the publication of the whole-brain probabilistic map in the future, 

as it is currently under development (16). As our work shows, cortical parcellation and gradients 

both can provide synergistic information to integrate histological and neuroimaging data in the 

human brain. By thus reconciling local and global cortical features, our work may provide new 

insights into the neuroanatomical basis of specialized and integrative cortical functions.  

 

METHODS 

Participants 

Our study used two independent human neuroimaging datasets. A 7T dataset (MICA-PNI, 10 

subjects, multiple time points) was used for discovery and reliability assessment. A 3T dataset 

(MICA-MICs, 50 subjects, one time point) was used for replication.  

a) MICA-PNI. For our main analysis, we investigated the imaging and phenotypic data of 10 

unrelated healthy adults (age: 29.20±5.20 years, 5 females). Each participant underwent three 

sessions on separate days. Data were collected between March 2022 and June 2023. This dataset 

is openly available at the OSF platform (https://osf.io/mhq3f/).  

b) MICA-MICs (67). This dataset consisted of 50 unrelated healthy young adults (age: 29.54±5.62 

years, 23 females). Data were collected between April 2018 and February 2021. This dataset has 

recently been released and is openly accessible to the imaging community 

(https://portal.conp.ca/dataset?id=projects/mica-mics) (67). 
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Both studies were approved by the Ethics Committee of the Montreal Neurological Institute and 

Hospital, and written and informed consent were obtained from all participants.  
 

MRI acquisition 

MICA-PNI. Scans were acquired using a 7T Siemens MAGNETOM Terra scanner equipped with 

an 8/32-channel transmit/receive Nova head coil at the McConnell Brain Imaging Centre (BIC) of 

the Montreal Neurological Institute. Each participant underwent multiple types of scans, including 

magnetization-prepared 2 rapid acquisition by gradient echo (MP2RAGE), multi-shell diffusion-

weighted imaging (DWI), rs-fMRI, and task fMRI.  

MP2RAGE is a self bias-field corrected sequence that acquires two images with different inversion 

times to generate a myelin-sensitive map of the T1 relaxation times of the brain and a synthetic 

T1-weighted (T1w) image. The 3D MP2RAGE sequence parameters are the following: 0.5mm 

isotropic voxels, matrix=320×320, 320 sagittal slices, repetition time (TR)=5170 ms, echo time 

(TE)=2.44 ms, inversion time (TI)=900 ms, flip angle=4°, iPAT=3, TI1=1000 ms, TI2=3200 ms, 

bandwidth=210 Hz/px, echo spacing=7.8 ms, and partial Fourier=6/8. Scans were visually 

inspected to ensure minimal head motion, and rescanned if necessary. Both inversion images were 

combined for T1 mapping to minimize sensitivity to B1 inhomogeneities and optimize intra- and 

inter-subject reliability (100, 101). 

DWI data was acquired using a multiband accelerated 2D spin-echo echo-planar imaging sequence. 

The acquisition included three shells with b-values of 300, 700, and 2000 s/mm2, and 10, 40, and 

90 diffusion weighting directions per shell, respectively. The parameters used were: 1.1 mm 

isotropic voxels, TR=7383 ms, TE=70.60 ms, flip angle=90°, refocusing flip angle=180°, 

FOV=224×224 mm2, slice thickness=1.1 mm, multi-band factor=2. Reverse phase encoding b0 

images were obtained for distortion correction of the DWI scans. 

For rs-fMRI, a 6-minute scan was conducted using multiband accelerated 2D-BOLD gradient 

echo-planar imaging. The parameters for rs-fMRI were as follows: 1.9 mm isotropic voxels, 

TR=1690 ms, TE1=10.8 ms, TE2=27.3 ms, TE3=43.8 ms, flip angle=67°, FOV=224×224 mm2, 

multiband factor=3, and echo spacing=0.53 ms. Participants were instructed to keep their eyes 

open, avoid falling asleep, and fixate on a cross presented on the screen. Two spin-echo images 

with opposite phase encoding directions were also acquired for distortion correction of the rs-fMRI 

scans, with the following parameters: phase encoding=AP/PA, 1.9 mm isotropic voxels, 

FOV=224×224 mm2, slice thickness=1.9 mm, TR=3000 ms, TE=18.4 ms, flip angle=90°. Using 

similar parameters, we also collected multiple task fMRI scans in three sessions, including episodic 

memory, semantic memory, spatial memory, MST and four different movie tasks.  

MICA-MICs. All scans were acquired using a 3T Siemens Magnetom Prisma-Fit equipped with a 

64-channel head coil at the McConnell Brain Imaging Centre of the Montreal Neurological 

Institute. All participants underwent T1w structural MRI, DWI, multiband rs-fMRI, and qT1 

imaging. For details of the parameters of sequences please see the Supplementary Materials. 

 

Multimodal MRI processing  

Raw DICOMS were sorted, and converted to NIfTI format using dcm2niix (102). The folder 
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structure was verified using the BIDS (103) validator (https://bids-standard.github.io/bids-

validator/). All pre-processing steps described below were implemented using open-source 

pipeline micapipe v0.2.3 available at (http://github.com/MICA-MNI/micapipe) (104).  

The MP2RAGE scans of each subject were reoriented using FSL (105), linearly co-registered, 

averaged, with background noise removed, corrected for intensity nonuniformity using N4 bias 

field correction from ANTS (106), and segmented into white and grey matter using FSL FAST 

(105). Resulting volumes were skull stripped using FSL (105, 107). Cortical surface models were 

generated from native T1w scans using FastSurfer (108). Surface reconstructions for each subject 

underwent manual correction for segmentation errors, by placing control points and applying 

manual edits.  

Regarding the DWI data, pre-processing was carried out using MRtrix (109) in the native DWI 

space. The DWI data underwent denoising (110, 111), b0 intensity normalization, and correction 

for susceptibility distortion, head motion, and eddy currents. These corrections were performed 

using FSL (112) and involved utilizing two b=0 s/mm2 volumes with reverse phase encoding. 

Anatomical masks for tractography were non-linearly co-registered to native DWI space using the 

deformable SyN approach implemented in ANTs (113). 

For the rs-fMRI scans, pre-processing steps were conducted using AFNI (114) and FSL(105) tools. 

The first five volumes were discarded to ensure magnetic field saturation. We applied Multi-Echo 

Independent Components Analysis (ME-ICA) (115, 116) to improve the signal-to-noise ratio and 

effect of motion correction. Spike regression was applied to remove timepoints with large motion 

spikes, effectively removing nuisance signals (117, 118). The volume timeseries were registered 

to FastSurfer (108) space using boundary-based registration implemented in ANTs using linear 

and non-linear methods (119).  

For details of the MRI processing of MICA-MICs dataset, please see the Supplementary 

Materials. 

 

Generating multimodal connectome matrices 

To investigate the vertex-wise multimodal connectomes, we first constructed a downsampled 

fsLR-5k surface using HCP’s workbench tools (wb_command) (120). The fsLR-32k surface 

templates and resampling spheres between 'fsaverage' and 'fs_LR' were accessed from the HCP's 

open-access pipeline (121). Subsequently, we downsampled the surface template, registration 

spheres, and mid-wall mask to 5k, resulting in a mesh comprising 4432 cortical vertices for each 

hemisphere. All vertex-wise analyses were performed based on this fsLR-5k surface. 

We calculated vertex-wise MPC matrices for each participant. Consistent with previous work (20, 

122, 123), we constructed 14 equivolumetric surfaces between the pial and white matter 

boundaries to sample qT1 intensities across cortical depths. This procedure generated distinct 

intensity profiles reflecting intracortical microstructural composition at each cortical vertex. Data 

sampled from surfaces closest to the pial and white matter boundaries were removed to mitigate 

partial volume effects. Intensity values at each depth were mapped to a common template surface, 

resampled to fsLR-5k surface, and spatially smoothed across each surface independently (full 

width at half maximum [FWHM]=3mm). Vertex-wise intensity profiles were cross-correlated 

using partial correlations controlling for the average cortex-wide intensity profile, and log-

transformed. This procedure resulted in the MPC matrices representing participant-specific 
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similarity in myelin proxies across the cortex.  

To generate each individual's SC, we employed MRtrix on pre-processed DWI data (109). Each 

surface vertex from the fsLR-5k surface was translated into a volumetric region of interest that 

filled the cortical ribbon using workbench tools(120). This process yielded approximately 10k 

seeds/targets for structural connectome generation. Anatomical segmentations and volumetric 

seeds were then mapped to DWI space applying the non-linear registration warp-field mentioned 

earlier. Next, we estimated multi-shell and multi-tissue response functions (124) and performed 

constrained spherical deconvolution to derive a fiber orientation distribution map  (125, 126). This 

procedure, achieved through MRtrix, generated a tractogram with 40M streamlines, with a 

maximum tract length of 250mm and a fractional anisotropy cutoff of 0.06. To reconstruct whole-

brain streamlines weighted by cross-sectional multipliers (127), we applied spherical 

deconvolution informed filtering of tractograms (SIFT2). Connection weights between 

seeds/targets were defined as the streamline count after SIFT2. 

Next, individual rs-fMRI timeseries mapped to subject-specific surface models were resampled to 

fsLR-5k surface. Surface-based rf-MRI data underwent spatial smoothing with a Gaussian kernel 

(FWHM=3mm). An individual’s FC matrix was generated by cross-correlating all vertex-wise 

timeseries. Correlation values subsequently underwent Fisher-R-to-Z transformations. FC 

matrices of all task fMRI scans were also generated using the same approach. 

 

Construction of gradient profiles  

We converted each participant’s SC, MPC, and FC matrices to a normalized angle affinity matrix 

respectively, and applied diffusion map embedding on these matrices to generate multimodal 

gradients (128). This non-linear dimensionality reduction procedure identified eigenvectors that 

describe main spatial axes of variance. Procrustes analysis aligned subject-level gradients to a 

group-level template generated from the group-average matrix of all participants. Gradients of the 

right hemisphere were aligned to the left hemisphere. Gradient analyses were performed using 

BrainSpace (v0.1.10; http://github.com/MICA-MNI/BrainSpace), limiting the number of 

gradients to 10 and using default sparsity (keeping the top 10% of SC weights) and diffusion (α=0.5) 

parameters (68). Here, we focused on the first five principal gradients of each modality (Figure 

1A). For each modality, all gradients were normalized by dividing by the maximum value in the 

absolute value of gradients, with values ranging from -1.0 to 1.0. 

The Julich-Brain is a 3D probabilistic atlas of the human brain’s cytoarchitecture, resulting from 

the analysis of 10 post mortem human brains (16) (Figure 1B). The probabilistic cytoarchitectonic 

maps (Julich-Brain v2.9, https://julich-brain-atlas.de/) were projected onto a template fsLR-5k 

surface to generate a surface-based representation (16). Surface-based probabilistic maps 

contained values indicating the probability of an area being localized in each voxel, ranging from 

0% to 100% overlap, with values ranging from 0 to 1. We registered the probabilistic maps to the 

fsLR-5k surface template. For each vertex, we defined its area label by identifying the area with 

the highest probability at that position. This area label was then used to assign all vertices on the 

fsLR-5k surface to the 228 areas defined by the Julich-Brain. 

In accordance with the previous sections, we computed the first five gradients of microstructure, 

structural connectivity, and functional connectivity, which accounted for the 31%, 18%, and 25% 

of variance in the input data (19). This allowed us to assign a unique gradient profile to each vertex, 

consisting of 15 gradient values (three modalities multiplied by five gradients). Subsequently, we 
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employed the probabilistic map of the Julich-Brain to generate area labels and assign cortical 

vertices to cytoarchitecturally-defined regions. Consequently, we obtained area-wise gradient 

profiles that effectively captured the majority of variance present in multimodal connectomes. To 

investigate the hierarchy of gradient profiles, we conducted PCA on the gradient profiles, aiming 

to identify the primary axis across all areas. We then arranged the area-wise gradient profiles based 

on the first component of the PCA and examined the gradient profile patterns of the areas located 

in the middle and at the two ends of the derived PCA axis.  

 

Gradient profile analyses 

Inter-area heterogeneity and homogeneity assessment. Understanding the relationships between 

diverse brain regions, including their similarities and differences, is essential for investigating the 

spatial patterns of brain organization. In this study, we focus on exploring inter-area heterogeneity 

and homogeneity to further reveal the global layout of cortical area. To quantify inter-area 

heterogeneity, we computed the global dissimilarity for each area. Specifically, we calculated the 

cosine distance between gradient profiles of each area, resulting in a cosine distance matrix 

(Figure 2A). The global dissimilarity was defined as the mean of each row in the cosine distance 

matrix, representing the distance between an area and all other areas.  To identify cortical regions 

with significantly higher or lower global dissimilarity, we projected the global dissimilarity map 

onto a sphere and conducted 1,000 spin permutation tests. An area was considered to have the 

highest global dissimilarity among the cortex if its original global dissimilarity value exceeded 

97.5% of the permutation values. Conversely, an area was regarded as having the lowest global 

dissimilarity if its original value was lower than 97.5% of the permutation values. To correct for 

multiple comparisons, we applied the FDR correction. To further investigate patterns of global 

dissimilarity, we conducted a network-level analysis utilizing the scheme proposed by Mesulam 

(70), which delineates four cortical functional zones (i.e., idiotypic, paralimbic, unimodal, 

heteromodal; see Figure 2B). Global dissimilarity between each pair of cortical hierarchies was 

compared using a two-sample t-test. FDR corrections were applied to correct for multiple 

comparisons, while spatial autocorrelation spin permutation tests were conducted for all tests. In 

order to explore the associations between global dissimilarity and cortical microstructural 

hierarchy, we generated a MPC matrix based on histological data from BigBrain (71), an ultrahigh-

resolution 3D human brain model. From this matrix, we estimated the principal histological 

gradient as a representation of microstructural hierarchy. To examine the associations between the 

histological gradient and global dissimilarity, we calculated Spearman’s correlation coefficient, 

with p-values corrected using 1,000 spin permutation tests.  

Differences between cortical regions are crucial to functional specialization, but at the same time, 

similarities between regions support the realization of higher-order cognitive functions and 

functional integration across brain regions. To assess the homogeneity of cortical areas, we 

calculated (1 - cosine distance) to represent the similarity between regional gradient profiles, 

resulting in an affinity matrix (Figure S1A). To evaluate the association between inter-area 

similarity and cortical hierarchy, we examined the distribution of similarity coefficients across 

four hierarchy levels. To identify cortical area with higher similarity, we performed hierarchical 

clustering on the affinity matrix to detect groups among the areas. We evaluated the clustering 

performance by calculating criterion values to determine the optimal number of clusters. We 

scrutinized the clusters with the highest criterion value and assessed the distribution of cortical 

hierarchies within each cluster to investigate the association between inter-area homogeneity and 
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cortical laminar differentiation.  

Intra-area homogeneity and heterogeneity assessment. In addition to the relationships between 

cortical areas, exploring the layout within an area will provide insights into understanding the local 

organization of the cortex. Given that each area was originally defined based on shared 

neuroanatomical features, we expect to find overall high intra-area homogeneity. Here we 

quantified, however, to which extent the level of homogeneity varies across the brain. We assessed 

intra-area heterogeneity at both the region-level and network-level. As previously described, we 

calculated the gradient profiles for each area by averaging the vertex-wise gradients within that 

area. For a given area i, we calculated the cosine distance between the vertex-wise multimodal 

gradients and gradient profile of area i, resulting in the generation of local dissimilarity of area i 

(Figure S2). This procedure was repeated for all areas, yielding the vertex-wise local dissimilarity 

map.  

To visualize the patterns of intra-area heterogeneity more effectively, we obtained the average of 

the vertex-wise local dissimilarity within each area. Furthermore, we investigated the local 

dissimilarity at the network-level using the four cortical hierarchies proposed in a previous study 

(70). We examined the distribution of local dissimilarity within these four cortical hierarchies and 

compared the differences between each hierarchy using a two-sample t-test with FDR correction 

and spatial autocorrelation spin permutation tests. To investigate associations between local 

dissimilarity and cortical microstructural hierarchy, we calculated Spearman’s correlation 

coefficient between the histological gradient and local dissimilarity, correcting the p-value using 

1,000 spin permutation tests.  

Associations to cross-state functional variability. To explore patterns of functional variability 

across different task fMRI scans, we constructed FC matrices using timeseries data derived from 

multiple task fMRI sessions. The cosine distance was then computed for each vertex across 

different tasks, resulting in a cross-state diversity matrix (Figure 3A). To quantify the cross-state 

diversity for a specific task, we averaged all distance values between that task and others. This 

process was repeated for all tasks, and the outcomes were mapped to areas, generating area-wise 

cross-state diversity for each task. Focusing on overall variability, we calculated the average of 

values across all tasks to create the cross-state diversity map. To investigate associations between 

cross-state diversity and global/local dissimilarity, we computed Spearman’s correlation 

coefficient. The resulting p-values were corrected using 1,000 spin permutation tests. 

 

Data availability 

The 7T MRI data is openly available at the OSF platform (https://osf.io/mhq3f/) upon publication. 

The Julich-Brain atlas is available at https://julich-brain-atlas.de/ and provided through the 

EBRAINS platform (https://www.ebrains.eu/tools/human-brain-atlas). The MICA-MICs 

replication data is openly available at https://portal.conp.ca/dataset?id=projects/mica-mics (67). 

Gradient mapping analyses was based on BrainSpace (https://brainspace.readthedocs.io/en/latest/) 

(68). 

 

Code availability 

Code for MRI data preprocessing is available at https://github.com/MICA-MNI/micapipe (104). 

The code for connectome gradients generation is available at https://github.com/MICA-
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MNI/BrainSpace. Code for the main analysis is openly available on https://github.com/MICA-

MNI/micaopen/tree/master/gradient_profiles. 
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