001024256 001__ 1024256
001024256 005__ 20250204113818.0
001024256 0247_ $$2doi$$a10.1103/PhysRevX.14.011053
001024256 0247_ $$2datacite_doi$$a10.34734/FZJ-2024-02063
001024256 0247_ $$2WOS$$aWOS:001195847000002
001024256 037__ $$aFZJ-2024-02063
001024256 082__ $$a530
001024256 1001_ $$0P:(DE-HGF)0$$aMiao, H.$$b0$$eCorresponding author
001024256 245__ $$aSpontaneous Chirality Flipping in an Orthogonal Spin-Charge Ordered Topological Magnet
001024256 260__ $$aCollege Park, Md.$$bAPS$$c2024
001024256 3367_ $$2DRIVER$$aarticle
001024256 3367_ $$2DataCite$$aOutput Types/Journal article
001024256 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1711357328_7892
001024256 3367_ $$2BibTeX$$aARTICLE
001024256 3367_ $$2ORCID$$aJOURNAL_ARTICLE
001024256 3367_ $$00$$2EndNote$$aJournal Article
001024256 520__ $$aThe asymmetric distribution of chiral objects with opposite chirality is of great fundamental interest ranging from molecular biology to particle physics. In quantum materials, chiral states can build on inversion-symmetry-breaking lattice structures or emerge from spontaneous magnetic ordering induced by competing interactions. Although the handedness of a chiral state can be changed through external fields, a spontaneous chirality flipping has yet to be discovered. We present experimental evidence of chirality flipping via changing temperature in a topological magnet EuAl4, which features orthogonal spin density waves (SDW) and charge density waves (CDW). Using circular dichroism of Bragg peaks in the resonant magnetic x-ray scattering, we find that the chirality of the helical SDW flips through a first-order phase transition with modified SDW wavelength. Intriguingly, we observe that the CDW couples strongly with the SDW and displays a rare commensurate-to-incommensurate transition at the chirality flipping temperature. Combining with first-principles calculations and angle-resolved photoemission spectroscopy, our results support a Fermi surface origin of the helical SDW with intertwined spin, charge, and lattice degrees of freedom in EuAl4. Our results reveal an unprecedented spontaneous chirality flipping and lay the groundwork for a new functional manipulation of chirality through momentum-dependent spin-charge-lattice interactions.
001024256 536__ $$0G:(DE-HGF)POF4-5211$$a5211 - Topological Matter (POF4-521)$$cPOF4-521$$fPOF IV$$x0
001024256 536__ $$0G:(EU-Grant)856538$$a3D MAGiC - Three-dimensional magnetization textures: Discovery and control on the nanoscale (856538)$$c856538$$fERC-2019-SyG$$x1
001024256 536__ $$0G:(GEPRIS)319898210$$aSFB 1238 C01 - Strukturinversionsasymmetrische Materie und Spin-Orbit-Phänomene mittels ab initio (C01) (319898210)$$c319898210$$x2
001024256 536__ $$0G:(GEPRIS)403503315$$aDFG project 403503315 - Grenzflächenstabilisierte Skyrmionen in Oxidstrukturen für die Skyrmionik (403503315)$$c403503315$$x3
001024256 588__ $$aDataset connected to CrossRef, Journals: juser.fz-juelich.de
001024256 7001_ $$0P:(DE-Juel1)157840$$aBouaziz, Juba$$b1$$eCorresponding author$$ufzj
001024256 7001_ $$0P:(DE-HGF)0$$aFabbris, G.$$b2
001024256 7001_ $$0P:(DE-HGF)0$$aMeier, W. R.$$b3
001024256 7001_ $$0P:(DE-HGF)0$$aYang, F. Z.$$b4
001024256 7001_ $$0P:(DE-HGF)0$$aLi, H. X.$$b5
001024256 7001_ $$0P:(DE-HGF)0$$aNelson, C.$$b6
001024256 7001_ $$0P:(DE-HGF)0$$aVescovo, E.$$b7
001024256 7001_ $$0P:(DE-HGF)0$$aZhang, S.$$b8
001024256 7001_ $$0P:(DE-HGF)0$$aChristianson, A. D.$$b9
001024256 7001_ $$0P:(DE-HGF)0$$aLee, H. N.$$b10
001024256 7001_ $$0P:(DE-HGF)0$$aZhang, Y.$$b11
001024256 7001_ $$0P:(DE-HGF)0$$aBatista, C. D.$$b12
001024256 7001_ $$0P:(DE-Juel1)130548$$aBlügel, S.$$b13
001024256 773__ $$0PERI:(DE-600)2622565-7$$a10.1103/PhysRevX.14.011053$$gVol. 14, no. 1, p. 011053$$n1$$p011053$$tPhysical review / X$$v14$$x2160-3308$$y2024
001024256 8564_ $$uhttps://juser.fz-juelich.de/record/1024256/files/PhysRevX.14.011053.pdf$$yOpenAccess
001024256 8564_ $$uhttps://juser.fz-juelich.de/record/1024256/files/PhysRevX.14.011053.gif?subformat=icon$$xicon$$yOpenAccess
001024256 8564_ $$uhttps://juser.fz-juelich.de/record/1024256/files/PhysRevX.14.011053.jpg?subformat=icon-1440$$xicon-1440$$yOpenAccess
001024256 8564_ $$uhttps://juser.fz-juelich.de/record/1024256/files/PhysRevX.14.011053.jpg?subformat=icon-180$$xicon-180$$yOpenAccess
001024256 8564_ $$uhttps://juser.fz-juelich.de/record/1024256/files/PhysRevX.14.011053.jpg?subformat=icon-640$$xicon-640$$yOpenAccess
001024256 909CO $$ooai:juser.fz-juelich.de:1024256$$pdnbdelivery$$pec_fundedresources$$pVDB$$pdriver$$popen_access$$popenaire
001024256 9101_ $$0I:(DE-HGF)0$$6P:(DE-HGF)0$$a Materials Science and Technology Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, USA$$b0
001024256 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)157840$$aForschungszentrum Jülich$$b1$$kFZJ
001024256 9101_ $$0I:(DE-HGF)0$$6P:(DE-HGF)0$$a Advanced Photon Source, Argonne National Laboratory, Argonne, Illinois 60439, USA$$b2
001024256 9101_ $$0I:(DE-HGF)0$$6P:(DE-HGF)0$$a Department of Materials Science and Engineering, University of Tennessee, Knoxville, Tennessee, USA$$b3
001024256 9101_ $$0I:(DE-HGF)0$$6P:(DE-HGF)0$$a Materials Science and Technology Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, USA$$b4
001024256 9101_ $$0I:(DE-HGF)0$$6P:(DE-HGF)0$$aAdvanced Materials Thrust, The Hong Kong University of Science and Technology (Guangzhou), Guangzhou, China$$b5
001024256 9101_ $$0I:(DE-HGF)0$$6P:(DE-HGF)0$$a Materials Science and Technology Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, USA$$b5
001024256 9101_ $$0I:(DE-HGF)0$$6P:(DE-HGF)0$$a National Synchrotron Light Source II, Brookhaven National Laboratory, Upton, New York 11973, USA$$b6
001024256 9101_ $$0I:(DE-HGF)0$$6P:(DE-HGF)0$$a National Synchrotron Light Source II, Brookhaven National Laboratory, Upton, New York 11973, USA$$b7
001024256 9101_ $$0I:(DE-HGF)0$$6P:(DE-HGF)0$$a Max-Planck-Institut fur Physik komplexer Systeme, Nothnitzer Straße 38, 01187 Dresden, Germany$$b8
001024256 9101_ $$0I:(DE-HGF)0$$6P:(DE-HGF)0$$a Materials Science and Technology Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, USA$$b9
001024256 9101_ $$0I:(DE-HGF)0$$6P:(DE-HGF)0$$a Materials Science and Technology Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, USA$$b10
001024256 9101_ $$0I:(DE-HGF)0$$6P:(DE-HGF)0$$a Department of Physics and Astronomy, The University of Tennessee, Knoxville, Tennessee 37996, USA$$b11
001024256 9101_ $$0I:(DE-HGF)0$$6P:(DE-HGF)0$$a Min H. Kao Department of Electrical Engineering and Computer Science, University of Tennessee, Knoxville, Tennessee 37996, USA$$b11
001024256 9101_ $$0I:(DE-HGF)0$$6P:(DE-HGF)0$$a Department of Physics and Astronomy, The University of Tennessee, Knoxville, Tennessee 37996, USA$$b12
001024256 9101_ $$0I:(DE-HGF)0$$6P:(DE-HGF)0$$a Quantum Condensed Matter Division and Shull-Wollan Center, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, USA$$b12
001024256 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)130548$$aForschungszentrum Jülich$$b13$$kFZJ
001024256 9131_ $$0G:(DE-HGF)POF4-521$$1G:(DE-HGF)POF4-520$$2G:(DE-HGF)POF4-500$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-5211$$aDE-HGF$$bKey Technologies$$lNatural, Artificial and Cognitive Information Processing$$vQuantum Materials$$x0
001024256 9141_ $$y2024
001024256 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2023-08-24
001024256 915__ $$0LIC:(DE-HGF)CCBY4$$2HGFVOC$$aCreative Commons Attribution CC BY 4.0
001024256 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2023-08-24
001024256 915__ $$0StatID:(DE-HGF)0700$$2StatID$$aFees$$d2023-08-24
001024256 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
001024256 915__ $$0StatID:(DE-HGF)0561$$2StatID$$aArticle Processing Charges$$d2023-08-24
001024256 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bPHYS REV X : 2022$$d2024-12-18
001024256 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2024-12-18
001024256 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2024-12-18
001024256 915__ $$0StatID:(DE-HGF)0501$$2StatID$$aDBCoverage$$bDOAJ Seal$$d2024-05-08T07:08:31Z
001024256 915__ $$0StatID:(DE-HGF)0500$$2StatID$$aDBCoverage$$bDOAJ$$d2024-05-08T07:08:31Z
001024256 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bDOAJ : Anonymous peer review$$d2024-05-08T07:08:31Z
001024256 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2024-12-18
001024256 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences$$d2024-12-18
001024256 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2024-12-18
001024256 915__ $$0StatID:(DE-HGF)9910$$2StatID$$aIF >= 10$$bPHYS REV X : 2022$$d2024-12-18
001024256 920__ $$lyes
001024256 9201_ $$0I:(DE-Juel1)PGI-1-20110106$$kPGI-1$$lQuanten-Theorie der Materialien$$x0
001024256 980__ $$ajournal
001024256 980__ $$aVDB
001024256 980__ $$aUNRESTRICTED
001024256 980__ $$aI:(DE-Juel1)PGI-1-20110106
001024256 9801_ $$aFullTexts