| Home > Publications database > Spontaneous Chirality Flipping in an Orthogonal Spin-Charge Ordered Topological Magnet > print |
| 001 | 1024256 | ||
| 005 | 20250204113818.0 | ||
| 024 | 7 | _ | |a 10.1103/PhysRevX.14.011053 |2 doi |
| 024 | 7 | _ | |a 10.34734/FZJ-2024-02063 |2 datacite_doi |
| 024 | 7 | _ | |a WOS:001195847000002 |2 WOS |
| 037 | _ | _ | |a FZJ-2024-02063 |
| 082 | _ | _ | |a 530 |
| 100 | 1 | _ | |a Miao, H. |0 P:(DE-HGF)0 |b 0 |e Corresponding author |
| 245 | _ | _ | |a Spontaneous Chirality Flipping in an Orthogonal Spin-Charge Ordered Topological Magnet |
| 260 | _ | _ | |a College Park, Md. |c 2024 |b APS |
| 336 | 7 | _ | |a article |2 DRIVER |
| 336 | 7 | _ | |a Output Types/Journal article |2 DataCite |
| 336 | 7 | _ | |a Journal Article |b journal |m journal |0 PUB:(DE-HGF)16 |s 1711357328_7892 |2 PUB:(DE-HGF) |
| 336 | 7 | _ | |a ARTICLE |2 BibTeX |
| 336 | 7 | _ | |a JOURNAL_ARTICLE |2 ORCID |
| 336 | 7 | _ | |a Journal Article |0 0 |2 EndNote |
| 520 | _ | _ | |a The asymmetric distribution of chiral objects with opposite chirality is of great fundamental interest ranging from molecular biology to particle physics. In quantum materials, chiral states can build on inversion-symmetry-breaking lattice structures or emerge from spontaneous magnetic ordering induced by competing interactions. Although the handedness of a chiral state can be changed through external fields, a spontaneous chirality flipping has yet to be discovered. We present experimental evidence of chirality flipping via changing temperature in a topological magnet EuAl4, which features orthogonal spin density waves (SDW) and charge density waves (CDW). Using circular dichroism of Bragg peaks in the resonant magnetic x-ray scattering, we find that the chirality of the helical SDW flips through a first-order phase transition with modified SDW wavelength. Intriguingly, we observe that the CDW couples strongly with the SDW and displays a rare commensurate-to-incommensurate transition at the chirality flipping temperature. Combining with first-principles calculations and angle-resolved photoemission spectroscopy, our results support a Fermi surface origin of the helical SDW with intertwined spin, charge, and lattice degrees of freedom in EuAl4. Our results reveal an unprecedented spontaneous chirality flipping and lay the groundwork for a new functional manipulation of chirality through momentum-dependent spin-charge-lattice interactions. |
| 536 | _ | _ | |a 5211 - Topological Matter (POF4-521) |0 G:(DE-HGF)POF4-5211 |c POF4-521 |f POF IV |x 0 |
| 536 | _ | _ | |a 3D MAGiC - Three-dimensional magnetization textures: Discovery and control on the nanoscale (856538) |0 G:(EU-Grant)856538 |c 856538 |f ERC-2019-SyG |x 1 |
| 536 | _ | _ | |a SFB 1238 C01 - Strukturinversionsasymmetrische Materie und Spin-Orbit-Phänomene mittels ab initio (C01) (319898210) |0 G:(GEPRIS)319898210 |c 319898210 |x 2 |
| 536 | _ | _ | |a DFG project 403503315 - Grenzflächenstabilisierte Skyrmionen in Oxidstrukturen für die Skyrmionik (403503315) |0 G:(GEPRIS)403503315 |c 403503315 |x 3 |
| 588 | _ | _ | |a Dataset connected to CrossRef, Journals: juser.fz-juelich.de |
| 700 | 1 | _ | |a Bouaziz, Juba |0 P:(DE-Juel1)157840 |b 1 |e Corresponding author |u fzj |
| 700 | 1 | _ | |a Fabbris, G. |0 P:(DE-HGF)0 |b 2 |
| 700 | 1 | _ | |a Meier, W. R. |0 P:(DE-HGF)0 |b 3 |
| 700 | 1 | _ | |a Yang, F. Z. |0 P:(DE-HGF)0 |b 4 |
| 700 | 1 | _ | |a Li, H. X. |0 P:(DE-HGF)0 |b 5 |
| 700 | 1 | _ | |a Nelson, C. |0 P:(DE-HGF)0 |b 6 |
| 700 | 1 | _ | |a Vescovo, E. |0 P:(DE-HGF)0 |b 7 |
| 700 | 1 | _ | |a Zhang, S. |0 P:(DE-HGF)0 |b 8 |
| 700 | 1 | _ | |a Christianson, A. D. |0 P:(DE-HGF)0 |b 9 |
| 700 | 1 | _ | |a Lee, H. N. |0 P:(DE-HGF)0 |b 10 |
| 700 | 1 | _ | |a Zhang, Y. |0 P:(DE-HGF)0 |b 11 |
| 700 | 1 | _ | |a Batista, C. D. |0 P:(DE-HGF)0 |b 12 |
| 700 | 1 | _ | |a Blügel, S. |0 P:(DE-Juel1)130548 |b 13 |
| 773 | _ | _ | |a 10.1103/PhysRevX.14.011053 |g Vol. 14, no. 1, p. 011053 |0 PERI:(DE-600)2622565-7 |n 1 |p 011053 |t Physical review / X |v 14 |y 2024 |x 2160-3308 |
| 856 | 4 | _ | |y OpenAccess |u https://juser.fz-juelich.de/record/1024256/files/PhysRevX.14.011053.pdf |
| 856 | 4 | _ | |y OpenAccess |x icon |u https://juser.fz-juelich.de/record/1024256/files/PhysRevX.14.011053.gif?subformat=icon |
| 856 | 4 | _ | |y OpenAccess |x icon-1440 |u https://juser.fz-juelich.de/record/1024256/files/PhysRevX.14.011053.jpg?subformat=icon-1440 |
| 856 | 4 | _ | |y OpenAccess |x icon-180 |u https://juser.fz-juelich.de/record/1024256/files/PhysRevX.14.011053.jpg?subformat=icon-180 |
| 856 | 4 | _ | |y OpenAccess |x icon-640 |u https://juser.fz-juelich.de/record/1024256/files/PhysRevX.14.011053.jpg?subformat=icon-640 |
| 909 | C | O | |o oai:juser.fz-juelich.de:1024256 |p openaire |p open_access |p driver |p VDB |p ec_fundedresources |p dnbdelivery |
| 910 | 1 | _ | |a Materials Science and Technology Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, USA |0 I:(DE-HGF)0 |b 0 |6 P:(DE-HGF)0 |
| 910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 1 |6 P:(DE-Juel1)157840 |
| 910 | 1 | _ | |a Advanced Photon Source, Argonne National Laboratory, Argonne, Illinois 60439, USA |0 I:(DE-HGF)0 |b 2 |6 P:(DE-HGF)0 |
| 910 | 1 | _ | |a Department of Materials Science and Engineering, University of Tennessee, Knoxville, Tennessee, USA |0 I:(DE-HGF)0 |b 3 |6 P:(DE-HGF)0 |
| 910 | 1 | _ | |a Materials Science and Technology Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, USA |0 I:(DE-HGF)0 |b 4 |6 P:(DE-HGF)0 |
| 910 | 1 | _ | |a Advanced Materials Thrust, The Hong Kong University of Science and Technology (Guangzhou), Guangzhou, China |0 I:(DE-HGF)0 |b 5 |6 P:(DE-HGF)0 |
| 910 | 1 | _ | |a Materials Science and Technology Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, USA |0 I:(DE-HGF)0 |b 5 |6 P:(DE-HGF)0 |
| 910 | 1 | _ | |a National Synchrotron Light Source II, Brookhaven National Laboratory, Upton, New York 11973, USA |0 I:(DE-HGF)0 |b 6 |6 P:(DE-HGF)0 |
| 910 | 1 | _ | |a National Synchrotron Light Source II, Brookhaven National Laboratory, Upton, New York 11973, USA |0 I:(DE-HGF)0 |b 7 |6 P:(DE-HGF)0 |
| 910 | 1 | _ | |a Max-Planck-Institut fur Physik komplexer Systeme, Nothnitzer Straße 38, 01187 Dresden, Germany |0 I:(DE-HGF)0 |b 8 |6 P:(DE-HGF)0 |
| 910 | 1 | _ | |a Materials Science and Technology Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, USA |0 I:(DE-HGF)0 |b 9 |6 P:(DE-HGF)0 |
| 910 | 1 | _ | |a Materials Science and Technology Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, USA |0 I:(DE-HGF)0 |b 10 |6 P:(DE-HGF)0 |
| 910 | 1 | _ | |a Department of Physics and Astronomy, The University of Tennessee, Knoxville, Tennessee 37996, USA |0 I:(DE-HGF)0 |b 11 |6 P:(DE-HGF)0 |
| 910 | 1 | _ | |a Min H. Kao Department of Electrical Engineering and Computer Science, University of Tennessee, Knoxville, Tennessee 37996, USA |0 I:(DE-HGF)0 |b 11 |6 P:(DE-HGF)0 |
| 910 | 1 | _ | |a Department of Physics and Astronomy, The University of Tennessee, Knoxville, Tennessee 37996, USA |0 I:(DE-HGF)0 |b 12 |6 P:(DE-HGF)0 |
| 910 | 1 | _ | |a Quantum Condensed Matter Division and Shull-Wollan Center, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, USA |0 I:(DE-HGF)0 |b 12 |6 P:(DE-HGF)0 |
| 910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 13 |6 P:(DE-Juel1)130548 |
| 913 | 1 | _ | |a DE-HGF |b Key Technologies |l Natural, Artificial and Cognitive Information Processing |1 G:(DE-HGF)POF4-520 |0 G:(DE-HGF)POF4-521 |3 G:(DE-HGF)POF4 |2 G:(DE-HGF)POF4-500 |4 G:(DE-HGF)POF |v Quantum Materials |9 G:(DE-HGF)POF4-5211 |x 0 |
| 914 | 1 | _ | |y 2024 |
| 915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0160 |2 StatID |b Essential Science Indicators |d 2023-08-24 |
| 915 | _ | _ | |a Creative Commons Attribution CC BY 4.0 |0 LIC:(DE-HGF)CCBY4 |2 HGFVOC |
| 915 | _ | _ | |a WoS |0 StatID:(DE-HGF)0113 |2 StatID |b Science Citation Index Expanded |d 2023-08-24 |
| 915 | _ | _ | |a Fees |0 StatID:(DE-HGF)0700 |2 StatID |d 2023-08-24 |
| 915 | _ | _ | |a OpenAccess |0 StatID:(DE-HGF)0510 |2 StatID |
| 915 | _ | _ | |a Article Processing Charges |0 StatID:(DE-HGF)0561 |2 StatID |d 2023-08-24 |
| 915 | _ | _ | |a JCR |0 StatID:(DE-HGF)0100 |2 StatID |b PHYS REV X : 2022 |d 2024-12-18 |
| 915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0200 |2 StatID |b SCOPUS |d 2024-12-18 |
| 915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0300 |2 StatID |b Medline |d 2024-12-18 |
| 915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0501 |2 StatID |b DOAJ Seal |d 2024-05-08T07:08:31Z |
| 915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0500 |2 StatID |b DOAJ |d 2024-05-08T07:08:31Z |
| 915 | _ | _ | |a Peer Review |0 StatID:(DE-HGF)0030 |2 StatID |b DOAJ : Anonymous peer review |d 2024-05-08T07:08:31Z |
| 915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0199 |2 StatID |b Clarivate Analytics Master Journal List |d 2024-12-18 |
| 915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1150 |2 StatID |b Current Contents - Physical, Chemical and Earth Sciences |d 2024-12-18 |
| 915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0150 |2 StatID |b Web of Science Core Collection |d 2024-12-18 |
| 915 | _ | _ | |a IF >= 10 |0 StatID:(DE-HGF)9910 |2 StatID |b PHYS REV X : 2022 |d 2024-12-18 |
| 920 | _ | _ | |l yes |
| 920 | 1 | _ | |0 I:(DE-Juel1)PGI-1-20110106 |k PGI-1 |l Quanten-Theorie der Materialien |x 0 |
| 980 | _ | _ | |a journal |
| 980 | _ | _ | |a VDB |
| 980 | _ | _ | |a UNRESTRICTED |
| 980 | _ | _ | |a I:(DE-Juel1)PGI-1-20110106 |
| 980 | 1 | _ | |a FullTexts |
| Library | Collection | CLSMajor | CLSMinor | Language | Author |
|---|