001024258 001__ 1024258
001024258 005__ 20250204113818.0
001024258 0247_ $$2doi$$a10.3847/1538-4357/ad1bef
001024258 0247_ $$2ISSN$$a0004-637X
001024258 0247_ $$2ISSN$$a1538-4357
001024258 0247_ $$2datacite_doi$$a10.34734/FZJ-2024-02065
001024258 0247_ $$2WOS$$aWOS:001180587600001
001024258 037__ $$aFZJ-2024-02065
001024258 082__ $$a520
001024258 1001_ $$0P:(DE-Juel1)177668$$aPfalzner, Susanne$$b0$$eCorresponding author$$ufzj
001024258 245__ $$aLow-mass Stars: Their Protoplanetary Disk Lifetime Distribution
001024258 260__ $$aLondon$$bInstitute of Physics Publ.$$c2024
001024258 3367_ $$2DRIVER$$aarticle
001024258 3367_ $$2DataCite$$aOutput Types/Journal article
001024258 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1714552474_3947
001024258 3367_ $$2BibTeX$$aARTICLE
001024258 3367_ $$2ORCID$$aJOURNAL_ARTICLE
001024258 3367_ $$00$$2EndNote$$aJournal Article
001024258 520__ $$aWhile most protoplanetary disks lose their gas within less than 10 Myr, individual disk lifetimes vary from <1 Myr to ≫20 Myr, with some disks existing for 40 Myr. Mean disk half-lifetimes hide this diversity; only a so-far nonexisting disk lifetime distribution could capture this fact. The benefit of a disk lifetime distribution would be twofold. First, it would provide a stringent test on disk evolution theories. Second, it could function as an input for planet formation models. Here, we derive such a disk lifetime distribution. We heuristically test different standard distribution forms for their ability to account for the observed disk fractions at certain ages. We here concentrate on the distribution for low-mass stars (spectral types M3.7–M6, Ms ≈ 0.1–0.24 M⊙) because disk lifetimes depend on stellar mass. A Weibull-type distribution (k = 1.78, λ = 9.15) describes the observational data if all stars have a disk at a cluster age tc = 0. However, a better match exists for lower initial disk fractions. For f(t=0) = 0.65, a Weibull distribution (k = 2.34, λ = 11.22) and a Gaussian distribution (σ = 9.52, μ = 9.52) fit the data similarly well. All distributions have in common that they are wide, and most disks are dissipated at ages >5 Myr. The next challenge is to quantitatively link the diversity of disk lifetimes to the diversity in planets.
001024258 536__ $$0G:(DE-HGF)POF4-5111$$a5111 - Domain-Specific Simulation & Data Life Cycle Labs (SDLs) and Research Groups (POF4-511)$$cPOF4-511$$fPOF IV$$x0
001024258 536__ $$0G:(DE-Juel-1)PROFILNRW-2020-038B$$aBig Bang to Big Data - B3D [NRW-Cluster für datenintensive Radioastronomie] (PROFILNRW-2020-038B)$$cPROFILNRW-2020-038B$$x1
001024258 588__ $$aDataset connected to CrossRef, Journals: juser.fz-juelich.de
001024258 7001_ $$0P:(DE-Juel1)175504$$aDincer, Furkan$$b1$$ufzj
001024258 773__ $$0PERI:(DE-600)1473835-1$$a10.3847/1538-4357/ad1bef$$gVol. 963, no. 2, p. 122 -$$n2$$p122$$tThe astrophysical journal / Part 1$$v963$$x0004-637X$$y2024
001024258 8564_ $$uhttps://juser.fz-juelich.de/record/1024258/files/lnvoice_8242877.pdf
001024258 8564_ $$uhttps://juser.fz-juelich.de/record/1024258/files/FZJ-2024-02065.pdf$$yOpenAccess
001024258 8564_ $$uhttps://juser.fz-juelich.de/record/1024258/files/lnvoice_8242877.gif?subformat=icon$$xicon
001024258 8564_ $$uhttps://juser.fz-juelich.de/record/1024258/files/lnvoice_8242877.jpg?subformat=icon-1440$$xicon-1440
001024258 8564_ $$uhttps://juser.fz-juelich.de/record/1024258/files/lnvoice_8242877.jpg?subformat=icon-180$$xicon-180
001024258 8564_ $$uhttps://juser.fz-juelich.de/record/1024258/files/lnvoice_8242877.jpg?subformat=icon-640$$xicon-640
001024258 8564_ $$uhttps://juser.fz-juelich.de/record/1024258/files/FZJ-2024-02065.gif?subformat=icon$$xicon$$yOpenAccess
001024258 8564_ $$uhttps://juser.fz-juelich.de/record/1024258/files/FZJ-2024-02065.jpg?subformat=icon-1440$$xicon-1440$$yOpenAccess
001024258 8564_ $$uhttps://juser.fz-juelich.de/record/1024258/files/FZJ-2024-02065.jpg?subformat=icon-180$$xicon-180$$yOpenAccess
001024258 8564_ $$uhttps://juser.fz-juelich.de/record/1024258/files/FZJ-2024-02065.jpg?subformat=icon-640$$xicon-640$$yOpenAccess
001024258 8767_ $$8lnvoice: 8242877$$92024-03-06$$a1200202408$$d2024-04-10$$eAPC$$jZahlung erfolgt$$z1550.40
001024258 909CO $$ooai:juser.fz-juelich.de:1024258$$pdnbdelivery$$popenCost$$pVDB$$pdriver$$pOpenAPC$$popen_access$$popenaire
001024258 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)177668$$aForschungszentrum Jülich$$b0$$kFZJ
001024258 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)175504$$aForschungszentrum Jülich$$b1$$kFZJ
001024258 9131_ $$0G:(DE-HGF)POF4-511$$1G:(DE-HGF)POF4-510$$2G:(DE-HGF)POF4-500$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-5111$$aDE-HGF$$bKey Technologies$$lEngineering Digital Futures – Supercomputing, Data Management and Information Security for Knowledge and Action$$vEnabling Computational- & Data-Intensive Science and Engineering$$x0
001024258 9141_ $$y2024
001024258 915pc $$0PC:(DE-HGF)0000$$2APC$$aAPC keys set
001024258 915pc $$0PC:(DE-HGF)0003$$2APC$$aDOAJ Journal
001024258 915__ $$0LIC:(DE-HGF)CCBY4$$2HGFVOC$$aCreative Commons Attribution CC BY 4.0
001024258 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2023-08-23
001024258 915__ $$0StatID:(DE-HGF)0700$$2StatID$$aFees$$d2023-08-23
001024258 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
001024258 915__ $$0StatID:(DE-HGF)0561$$2StatID$$aArticle Processing Charges$$d2023-08-23
001024258 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2023-08-23
001024258 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2024-12-11
001024258 915__ $$0StatID:(DE-HGF)0501$$2StatID$$aDBCoverage$$bDOAJ Seal$$d2024-04-03T10:32:32Z
001024258 915__ $$0StatID:(DE-HGF)0500$$2StatID$$aDBCoverage$$bDOAJ$$d2024-04-03T10:32:32Z
001024258 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bDOAJ : Peer review, Anonymous peer review, Double anonymous peer review$$d2024-04-03T10:32:32Z
001024258 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2024-12-11
001024258 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences$$d2024-12-11
001024258 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2024-12-11
001024258 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bASTROPHYS J : 2022$$d2024-12-11
001024258 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2024-12-11
001024258 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search$$d2024-12-11
001024258 915__ $$0StatID:(DE-HGF)0020$$2StatID$$aNo Peer Review$$bASC$$d2024-12-11
001024258 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5$$d2024-12-11
001024258 920__ $$lyes
001024258 9201_ $$0I:(DE-Juel1)JSC-20090406$$kJSC$$lJülich Supercomputing Center$$x0
001024258 980__ $$ajournal
001024258 980__ $$aVDB
001024258 980__ $$aUNRESTRICTED
001024258 980__ $$aI:(DE-Juel1)JSC-20090406
001024258 980__ $$aAPC
001024258 9801_ $$aAPC
001024258 9801_ $$aFullTexts