001024271 001__ 1024271
001024271 005__ 20250204113819.0
001024271 0247_ $$2doi$$a10.1021/jacs.3c12323
001024271 0247_ $$2ISSN$$a0002-7863
001024271 0247_ $$2ISSN$$a1520-5126
001024271 0247_ $$2ISSN$$a1943-2984
001024271 0247_ $$2datacite_doi$$a10.34734/FZJ-2024-02078
001024271 0247_ $$2pmid$$a38175928
001024271 0247_ $$2WOS$$aWOS:001144609000001
001024271 037__ $$aFZJ-2024-02078
001024271 082__ $$a540
001024271 1001_ $$0P:(DE-HGF)0$$aFaka, Vasiliki$$b0$$eFirst author
001024271 245__ $$aPressure-Induced Dislocations and Their Influence on Ionic Transport in Li$^{+}$-Conducting Argyrodites
001024271 260__ $$aWashington, DC$$bACS Publications$$c2024
001024271 3367_ $$2DRIVER$$aarticle
001024271 3367_ $$2DataCite$$aOutput Types/Journal article
001024271 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1711461148_9882
001024271 3367_ $$2BibTeX$$aARTICLE
001024271 3367_ $$2ORCID$$aJOURNAL_ARTICLE
001024271 3367_ $$00$$2EndNote$$aJournal Article
001024271 520__ $$aThe influence of the microstructure on the ionic conductivity and cell performance is a topic of broad scientific interest in solid-state batteries. The current understanding is that interfacial decomposition reactions during cycling induce local strain at the interfaces between solid electrolytes and the anode/cathode, as well as within the electrode composites. Characterizing the effects of internal strain on ion transport is particularly important, given the significant local chemomechanical effects caused by volumetric changes of the active materials during cycling. Here, we show the effects of internal strain on the bulk ionic transport of the argyrodite Li6PS5Br. Internal strain is reproducibly induced by applying pressures with values up to 10 GPa. An internal permanent strain is observed in the material, indicating long-range strain fields typical for dislocations. With increasing dislocation densities, an increase in the lithium ionic conductivity can be observed that extends into improved ionic transport in solid-state battery electrode composites. This work shows the potential of strain engineering as an additional approach for tuning ion conductors without changing the composition of the material itself.
001024271 536__ $$0G:(DE-HGF)POF4-1221$$a1221 - Fundamentals and Materials (POF4-122)$$cPOF4-122$$fPOF IV$$x0
001024271 588__ $$aDataset connected to CrossRef, Journals: juser.fz-juelich.de
001024271 7001_ $$0P:(DE-Juel1)185922$$aAgne, Matthias T.$$b1
001024271 7001_ $$aLange, Martin A.$$b2
001024271 7001_ $$aDaisenberger, Dominik$$b3
001024271 7001_ $$0P:(DE-HGF)0$$aWankmiller, Björn$$b4
001024271 7001_ $$aSchwarzmüller, Stefan$$b5
001024271 7001_ $$00000-0002-2098-6087$$aHuppertz, Hubert$$b6
001024271 7001_ $$aMaus, Oliver$$b7
001024271 7001_ $$aHelm, Bianca$$b8
001024271 7001_ $$0P:(DE-HGF)0$$aBöger, Thorben$$b9
001024271 7001_ $$0P:(DE-HGF)0$$aHartel, Johannes$$b10
001024271 7001_ $$0P:(DE-HGF)0$$aGerdes, Josef Maximilian$$b11
001024271 7001_ $$0P:(DE-HGF)0$$aMolaison, Jamie J.$$b12
001024271 7001_ $$00000-0003-2038-186X$$aKieslich, Gregor$$b13
001024271 7001_ $$00000-0001-7114-8051$$aHansen, Michael Ryan$$b14
001024271 7001_ $$0P:(DE-Juel1)184735$$aZeier, Wolfgang G.$$b15$$eCorresponding author
001024271 773__ $$0PERI:(DE-600)1472210-0$$a10.1021/jacs.3c12323$$gVol. 146, no. 2, p. 1710 - 1721$$n2$$p1710 - 1721$$tJournal of the American Chemical Society$$v146$$x0002-7863$$y2024
001024271 8564_ $$uhttps://juser.fz-juelich.de/record/1024271/files/revised%20manuscript.pdf$$yPublished on 2024-01-04. Available in OpenAccess from 2025-01-04.
001024271 8564_ $$uhttps://juser.fz-juelich.de/record/1024271/files/revised%20manuscript.gif?subformat=icon$$xicon$$yPublished on 2024-01-04. Available in OpenAccess from 2025-01-04.
001024271 8564_ $$uhttps://juser.fz-juelich.de/record/1024271/files/revised%20manuscript.jpg?subformat=icon-1440$$xicon-1440$$yPublished on 2024-01-04. Available in OpenAccess from 2025-01-04.
001024271 8564_ $$uhttps://juser.fz-juelich.de/record/1024271/files/revised%20manuscript.jpg?subformat=icon-180$$xicon-180$$yPublished on 2024-01-04. Available in OpenAccess from 2025-01-04.
001024271 8564_ $$uhttps://juser.fz-juelich.de/record/1024271/files/revised%20manuscript.jpg?subformat=icon-640$$xicon-640$$yPublished on 2024-01-04. Available in OpenAccess from 2025-01-04.
001024271 909CO $$ooai:juser.fz-juelich.de:1024271$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire
001024271 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)184735$$aForschungszentrum Jülich$$b15$$kFZJ
001024271 9131_ $$0G:(DE-HGF)POF4-122$$1G:(DE-HGF)POF4-120$$2G:(DE-HGF)POF4-100$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-1221$$aDE-HGF$$bForschungsbereich Energie$$lMaterialien und Technologien für die Energiewende (MTET)$$vElektrochemische Energiespeicherung$$x0
001024271 9141_ $$y2024
001024271 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2023-10-21
001024271 915__ $$0StatID:(DE-HGF)1190$$2StatID$$aDBCoverage$$bBiological Abstracts$$d2023-10-21
001024271 915__ $$0StatID:(DE-HGF)0530$$2StatID$$aEmbargoed OpenAccess
001024271 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2023-10-21
001024271 915__ $$0StatID:(DE-HGF)1210$$2StatID$$aDBCoverage$$bIndex Chemicus$$d2023-10-21
001024271 915__ $$0StatID:(DE-HGF)1200$$2StatID$$aDBCoverage$$bChemical Reactions$$d2023-10-21
001024271 915__ $$0StatID:(DE-HGF)0420$$2StatID$$aNationallizenz$$d2024-12-13$$wger
001024271 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bJ AM CHEM SOC : 2022$$d2024-12-13
001024271 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2024-12-13
001024271 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2024-12-13
001024271 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search$$d2024-12-13
001024271 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC$$d2024-12-13
001024271 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2024-12-13
001024271 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences$$d2024-12-13
001024271 915__ $$0StatID:(DE-HGF)1050$$2StatID$$aDBCoverage$$bBIOSIS Previews$$d2024-12-13
001024271 915__ $$0StatID:(DE-HGF)1030$$2StatID$$aDBCoverage$$bCurrent Contents - Life Sciences$$d2024-12-13
001024271 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2024-12-13
001024271 915__ $$0StatID:(DE-HGF)9915$$2StatID$$aIF >= 15$$bJ AM CHEM SOC : 2022$$d2024-12-13
001024271 9201_ $$0I:(DE-Juel1)IEK-12-20141217$$kIEK-12$$lHelmholtz-Institut Münster Ionenleiter für Energiespeicher$$x0
001024271 9801_ $$aFullTexts
001024271 980__ $$ajournal
001024271 980__ $$aVDB
001024271 980__ $$aUNRESTRICTED
001024271 980__ $$aI:(DE-Juel1)IEK-12-20141217
001024271 981__ $$aI:(DE-Juel1)IMD-4-20141217