001     1024272
005     20250204113819.0
024 7 _ |a 10.1021/acsaem.3c02652
|2 doi
024 7 _ |a 10.34734/FZJ-2024-02079
|2 datacite_doi
024 7 _ |a WOS:001176923300001
|2 WOS
037 _ _ |a FZJ-2024-02079
082 _ _ |a 540
100 1 _ |a Helm, Bianca
|0 P:(DE-HGF)0
|b 0
245 _ _ |a Reducing the Defect Formation Energy by Aliovalent Sn(+IV) and Isovalent P(+V) Substitution in $Li_3SbS_4$ Promotes Li${^+}$ Transport
260 _ _ |a Washington, DC
|c 2024
|b ACS Publications
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1711526240_17686
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a The search for highly conducting Li+ solid electrolytes focuses on sulfide- and halide-based materials, where typically the strongly atomic disordered materials are the most promising. The atomic disorder corresponds to a flattened energy landscape having similar relative site energies for different Li+ positions facilitating motion. In addition, the highly disordered Li+ conductors have negligible defect formation energy as moving charges are readily available. This work investigates the isovalent Li3Sb1–xPxS4 (0 ≤ x ≤ 0.5) and the aliovalent Li3+xSb1–xSnxS4 (0 ≤ x ≤ 0.2) substitution series of thio-LISICON materials by using X-ray diffraction, high-resolution neutron diffraction, impedance spectroscopy, and defect calculations. The starting composition Li3SbS4 has a low ionic conductivity of ∼10–11 S·cm–1 and both substituents improve the ionic conductivity strongly by up to 4 orders of magnitude. On the one hand, in substituted Li3SbS4 structures, only minor structural changes are observed which cannot sufficiently explain the significant impact on the Li+ conductivity. On the other hand, the Li+ carrier density reveals a correlation to the activation energy and first-principles defect calculations, displaying significantly reduced defect formation energy upon substitution. Here, we show within two different substitution series that the defect formation energy plays a major role for ionic motion in this class of thio-LISICON materials.
536 _ _ |a 1221 - Fundamentals and Materials (POF4-122)
|0 G:(DE-HGF)POF4-1221
|c POF4-122
|f POF IV
|x 0
588 _ _ |a Dataset connected to CrossRef, Journals: juser.fz-juelich.de
700 1 _ |a Strotmann, Kyra
|b 1
700 1 _ |a Böger, Thorben
|0 P:(DE-HGF)0
|b 2
700 1 _ |a Samanta, Bibek
|0 P:(DE-HGF)0
|b 3
700 1 _ |a Banik, Ananya
|0 0000-0003-0455-3051
|b 4
700 1 _ |a Lange, Martin A.
|0 P:(DE-HGF)0
|b 5
700 1 _ |a Li, Yuheng
|0 0000-0002-1865-1122
|b 6
700 1 _ |a Li, Cheng
|0 P:(DE-Juel1)172659
|b 7
700 1 _ |a Hansen, Michael Ryan
|0 0000-0001-7114-8051
|b 8
700 1 _ |a Canepa, Pieremanuele
|0 0000-0002-5168-9253
|b 9
700 1 _ |a Zeier, Wolfgang G.
|0 P:(DE-Juel1)184735
|b 10
|e Corresponding author
773 _ _ |a 10.1021/acsaem.3c02652
|g Vol. 7, no. 5, p. 1735 - 1747
|0 PERI:(DE-600)2916551-9
|n 5
|p 1735 - 1747
|t ACS applied energy materials
|v 7
|y 2024
|x 2574-0962
856 4 _ |y Published on 2024-02-29. Available in OpenAccess from 2025-02-28.
|u https://juser.fz-juelich.de/record/1024272/files/Revised_Manuscript_final.pdf
856 4 _ |y Published on 2024-02-29. Available in OpenAccess from 2025-02-28.
|x icon
|u https://juser.fz-juelich.de/record/1024272/files/Revised_Manuscript_final.gif?subformat=icon
856 4 _ |y Published on 2024-02-29. Available in OpenAccess from 2025-02-28.
|x icon-1440
|u https://juser.fz-juelich.de/record/1024272/files/Revised_Manuscript_final.jpg?subformat=icon-1440
856 4 _ |y Published on 2024-02-29. Available in OpenAccess from 2025-02-28.
|x icon-180
|u https://juser.fz-juelich.de/record/1024272/files/Revised_Manuscript_final.jpg?subformat=icon-180
856 4 _ |y Published on 2024-02-29. Available in OpenAccess from 2025-02-28.
|x icon-640
|u https://juser.fz-juelich.de/record/1024272/files/Revised_Manuscript_final.jpg?subformat=icon-640
909 C O |o oai:juser.fz-juelich.de:1024272
|p openaire
|p open_access
|p VDB
|p driver
|p dnbdelivery
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 10
|6 P:(DE-Juel1)184735
913 1 _ |a DE-HGF
|b Forschungsbereich Energie
|l Materialien und Technologien für die Energiewende (MTET)
|1 G:(DE-HGF)POF4-120
|0 G:(DE-HGF)POF4-122
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-100
|4 G:(DE-HGF)POF
|v Elektrochemische Energiespeicherung
|9 G:(DE-HGF)POF4-1221
|x 0
914 1 _ |y 2024
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2023-08-25
915 _ _ |a Embargoed OpenAccess
|0 StatID:(DE-HGF)0530
|2 StatID
915 _ _ |a WoS
|0 StatID:(DE-HGF)0113
|2 StatID
|b Science Citation Index Expanded
|d 2023-08-25
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b ACS APPL ENERG MATER : 2022
|d 2024-12-11
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2024-12-11
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2024-12-11
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2024-12-11
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1150
|2 StatID
|b Current Contents - Physical, Chemical and Earth Sciences
|d 2024-12-11
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1160
|2 StatID
|b Current Contents - Engineering, Computing and Technology
|d 2024-12-11
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2024-12-11
915 _ _ |a IF >= 5
|0 StatID:(DE-HGF)9905
|2 StatID
|b ACS APPL ENERG MATER : 2022
|d 2024-12-11
920 1 _ |0 I:(DE-Juel1)IEK-12-20141217
|k IEK-12
|l Helmholtz-Institut Münster Ionenleiter für Energiespeicher
|x 0
980 1 _ |a FullTexts
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)IEK-12-20141217
981 _ _ |a I:(DE-Juel1)IMD-4-20141217


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21