001024358 001__ 1024358
001024358 005__ 20250203103119.0
001024358 0247_ $$2doi$$a10.48550/ARXIV.2303.09576
001024358 0247_ $$2doi$$a10.48550/arXiv.2303.09576
001024358 0247_ $$2datacite_doi$$a10.34734/FZJ-2024-02114
001024358 037__ $$aFZJ-2024-02114
001024358 041__ $$aEnglish
001024358 1001_ $$0P:(DE-HGF)0$$aTehranchi, A.$$b0$$eCorresponding author
001024358 245__ $$aPhase stability and defect studies of Mg-based Laves phases using defect phase diagrams
001024358 260__ $$barXiv$$c2023
001024358 3367_ $$0PUB:(DE-HGF)25$$2PUB:(DE-HGF)$$aPreprint$$bpreprint$$mpreprint$$s1711544912_11791
001024358 3367_ $$2ORCID$$aWORKING_PAPER
001024358 3367_ $$028$$2EndNote$$aElectronic Article
001024358 3367_ $$2DRIVER$$apreprint
001024358 3367_ $$2BibTeX$$aARTICLE
001024358 3367_ $$2DataCite$$aOutput Types/Working Paper
001024358 520__ $$aLaves phases often form as secondary phases in metallic alloys and have a significant effect on their structural properties. Thus, phase stability studies for these chemically and structurally complex phases in addition to mechanical behavior studies are of great interest. In this work, we use the concept of metastable bulk phase and defect phase diagrams to augment the understanding of the bulk phase and defect phase stability in Laves phases in Mg-based alloys. In this way, we resolve the discrepancy between bulk phase diagrams and experimental observations regarding the formation of Mg-rich C14 and Al-rich C15 Laves phases in MgAlCa alloys at moderate temperatures. Moreover, the effect of the thermodynamic state of alloys on the competition between solute-rich hcp-like planar defects and stoichiometric basal stacking faults is clarified, which determines the brittleness of these alloys. \end{abstract}
001024358 536__ $$0G:(DE-HGF)POF4-5351$$a5351 - Platform for Correlative, In Situ and Operando Characterization (POF4-535)$$cPOF4-535$$fPOF IV$$x0
001024358 536__ $$0G:(DE-HGF)POF4-5353$$a5353 - Understanding the Structural and Functional Behavior of Solid State Systems (POF4-535)$$cPOF4-535$$fPOF IV$$x1
001024358 536__ $$0G:(GEPRIS)437411567$$aSFB 1394 A03 - Korrelative Struktur-, Chemie- und Bindungs-Charakterisierung von 1D und 2D Defektphasen (A03) (437411567)$$c437411567$$x2
001024358 536__ $$0G:(GEPRIS)437413387$$aSFB 1394 A06 - Effiziente und hochgenaue interatomare Potentiale für die Simulation von Defektphasen (A06) (437413387)$$c437413387$$x3
001024358 536__ $$0G:(GEPRIS)437516137$$aSFB 1394 C05 - Ab initio Thermodynamik von Defektphasen (C05) (437516137)$$c437516137$$x4
001024358 588__ $$aDataset connected to DataCite
001024358 650_7 $$2Other$$aMaterials Science (cond-mat.mtrl-sci)
001024358 650_7 $$2Other$$aFOS: Physical sciences
001024358 7001_ $$0P:(DE-Juel1)161504$$aLipinska-Chwalek, M.$$b1$$ufzj
001024358 7001_ $$0P:(DE-Juel1)130824$$aMayer, Joachim$$b2$$ufzj
001024358 7001_ $$0P:(DE-HGF)0$$aNeugebauer, J.$$b3
001024358 7001_ $$0P:(DE-HGF)0$$aHickel, T.$$b4
001024358 773__ $$a10.48550/arXiv.2303.09576$$n03$$p09576v1$$tPhase stability and defect studies of Mg-based Laves phases using defect phase diagrams$$v2023$$y2023
001024358 8564_ $$uhttps://juser.fz-juelich.de/record/1024358/files/Phase%20stability%20and%20defect.pdf$$yOpenAccess
001024358 8564_ $$uhttps://juser.fz-juelich.de/record/1024358/files/Phase%20stability%20and%20defect.gif?subformat=icon$$xicon$$yOpenAccess
001024358 8564_ $$uhttps://juser.fz-juelich.de/record/1024358/files/Phase%20stability%20and%20defect.jpg?subformat=icon-1440$$xicon-1440$$yOpenAccess
001024358 8564_ $$uhttps://juser.fz-juelich.de/record/1024358/files/Phase%20stability%20and%20defect.jpg?subformat=icon-180$$xicon-180$$yOpenAccess
001024358 8564_ $$uhttps://juser.fz-juelich.de/record/1024358/files/Phase%20stability%20and%20defect.jpg?subformat=icon-640$$xicon-640$$yOpenAccess
001024358 909CO $$ooai:juser.fz-juelich.de:1024358$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire
001024358 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)161504$$aForschungszentrum Jülich$$b1$$kFZJ
001024358 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)130824$$aForschungszentrum Jülich$$b2$$kFZJ
001024358 9131_ $$0G:(DE-HGF)POF4-535$$1G:(DE-HGF)POF4-530$$2G:(DE-HGF)POF4-500$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-5351$$aDE-HGF$$bKey Technologies$$lMaterials Systems Engineering$$vMaterials Information Discovery$$x0
001024358 9131_ $$0G:(DE-HGF)POF4-535$$1G:(DE-HGF)POF4-530$$2G:(DE-HGF)POF4-500$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-5353$$aDE-HGF$$bKey Technologies$$lMaterials Systems Engineering$$vMaterials Information Discovery$$x1
001024358 9141_ $$y2024
001024358 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
001024358 920__ $$lyes
001024358 9201_ $$0I:(DE-Juel1)ER-C-1-20170209$$kER-C-1$$lPhysik Nanoskaliger Systeme$$x0
001024358 9201_ $$0I:(DE-Juel1)ER-C-2-20170209$$kER-C-2$$lMaterialwissenschaft u. Werkstofftechnik$$x1
001024358 980__ $$apreprint
001024358 980__ $$aVDB
001024358 980__ $$aUNRESTRICTED
001024358 980__ $$aI:(DE-Juel1)ER-C-1-20170209
001024358 980__ $$aI:(DE-Juel1)ER-C-2-20170209
001024358 9801_ $$aFullTexts