001024359 001__ 1024359 001024359 005__ 20250203103119.0 001024359 0247_ $$2doi$$a10.1016/j.jcis.2023.06.147 001024359 0247_ $$2ISSN$$a0021-9797 001024359 0247_ $$2ISSN$$a1095-7103 001024359 0247_ $$2pmid$$a37390528 001024359 0247_ $$2WOS$$aWOS:001053981200001 001024359 037__ $$aFZJ-2024-02115 001024359 082__ $$a540 001024359 1001_ $$00000-0001-9961-5731$$aPan, Shih-Huang$$b0 001024359 245__ $$aSynergistic dual electrolyte additives for fluoride rich solid-electrolyte interface on Li metal anode surface: Mechanistic understanding of electrolyte decomposition 001024359 260__ $$aAmsterdam [u.a.]$$bElsevier$$c2023 001024359 3367_ $$2DRIVER$$aarticle 001024359 3367_ $$2DataCite$$aOutput Types/Journal article 001024359 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1712762139_24401 001024359 3367_ $$2BibTeX$$aARTICLE 001024359 3367_ $$2ORCID$$aJOURNAL_ARTICLE 001024359 3367_ $$00$$2EndNote$$aJournal Article 001024359 520__ $$aImproving the quality of the solid-electrolyte interphase (SEI) layer is highly imperative to stabilize the Li-metal anodes for the practical application of high-energy–density batteries. However, controllably managing the formation of robust SEI layers on the anode is challenging in state-of-the-art electrolytes. Herein, we discuss the role of dual additives fluoroethylene carbonate (FEC) and lithium difluorophosphate (LiPO2F2, LiPF) within the commercial electrolyte mixture (LiPF6/EC/DEC) considering their reactivity with Li metal anodes using density functional theory (DFT) and ab initio molecular dynamics (AIMD) simulations. Synergistic effects of dual additives on SEI formation mechanisms are explored systematically by invoking different electrolyte mixtures including pure electrolyte (LP47), mono-additive (LP47/FEC and LP47/LiPF), and dual additives (LP47/FEC/LiPF). The present work suggests that the addition of dual additives accelerates the reduction of salt and additives while increasing the formation of a LiF-rich SEI layer. In addition, calculated atomic charges are applied to predict the representative F1s X-ray photoelectron (XPS) signal, and our results agree well with the experimentally identified SEI components. The nature of carbon and oxygen-containing groups resulting from the electrolyte decompositions at the anode surface is also analyzed. We find that the presence of dual additives inhibits undesirable solvent degradation in the respective mixtures, which effectively restricts the hazardous side products at the electrolyte-anode interface and improves SEI layer quality. 001024359 536__ $$0G:(DE-HGF)POF4-1223$$a1223 - Batteries in Application (POF4-122)$$cPOF4-122$$fPOF IV$$x0 001024359 536__ $$0G:(DE-HGF)POF4-1222$$a1222 - Components and Cells (POF4-122)$$cPOF4-122$$fPOF IV$$x1 001024359 536__ $$0G:(BMBF)13XP0304A$$aLiBEST2 - Lithium-Batterie-Konzepte mit hoher Energiedichte, Leistung und Sicherheit (13XP0304A)$$c13XP0304A$$x2 001024359 588__ $$aDataset connected to CrossRef, Journals: juser.fz-juelich.de 001024359 7001_ $$0P:(DE-HGF)0$$aNachimuthu, Santhanamoorthi$$b1 001024359 7001_ $$0P:(DE-HGF)0$$aHwang, Bing Joe$$b2 001024359 7001_ $$0P:(DE-Juel1)172047$$aBrunklaus, Gunther$$b3$$ufzj 001024359 7001_ $$0P:(DE-HGF)0$$aJiang, Jyh-Chiang$$b4$$eCorresponding author 001024359 773__ $$0PERI:(DE-600)1469021-4$$a10.1016/j.jcis.2023.06.147$$gVol. 649, p. 804 - 814$$p804 - 814$$tJournal of colloid and interface science$$v649$$x0021-9797$$y2023 001024359 8564_ $$uhttps://juser.fz-juelich.de/record/1024359/files/Synergistic%20dual%20electrolyte%20additives%20for%20fluoride%20rich%20solid-electrolyte%20interface%20on%20Li%20metal%20anode%20surface_%20Mechanistic%20understanding%20of%20electrolyte%20decomposition.pdf$$yRestricted 001024359 8564_ $$uhttps://juser.fz-juelich.de/record/1024359/files/Synergistic%20dual%20electrolyte%20additives%20for%20fluoride%20rich%20solid-electrolyte%20interface%20on%20Li%20metal%20anode%20surface_%20Mechanistic%20understanding%20of%20electrolyte%20decomposition.gif?subformat=icon$$xicon$$yRestricted 001024359 8564_ $$uhttps://juser.fz-juelich.de/record/1024359/files/Synergistic%20dual%20electrolyte%20additives%20for%20fluoride%20rich%20solid-electrolyte%20interface%20on%20Li%20metal%20anode%20surface_%20Mechanistic%20understanding%20of%20electrolyte%20decomposition.jpg?subformat=icon-1440$$xicon-1440$$yRestricted 001024359 8564_ $$uhttps://juser.fz-juelich.de/record/1024359/files/Synergistic%20dual%20electrolyte%20additives%20for%20fluoride%20rich%20solid-electrolyte%20interface%20on%20Li%20metal%20anode%20surface_%20Mechanistic%20understanding%20of%20electrolyte%20decomposition.jpg?subformat=icon-180$$xicon-180$$yRestricted 001024359 8564_ $$uhttps://juser.fz-juelich.de/record/1024359/files/Synergistic%20dual%20electrolyte%20additives%20for%20fluoride%20rich%20solid-electrolyte%20interface%20on%20Li%20metal%20anode%20surface_%20Mechanistic%20understanding%20of%20electrolyte%20decomposition.jpg?subformat=icon-640$$xicon-640$$yRestricted 001024359 909CO $$ooai:juser.fz-juelich.de:1024359$$pVDB 001024359 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)172047$$aForschungszentrum Jülich$$b3$$kFZJ 001024359 9131_ $$0G:(DE-HGF)POF4-122$$1G:(DE-HGF)POF4-120$$2G:(DE-HGF)POF4-100$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-1223$$aDE-HGF$$bForschungsbereich Energie$$lMaterialien und Technologien für die Energiewende (MTET)$$vElektrochemische Energiespeicherung$$x0 001024359 9131_ $$0G:(DE-HGF)POF4-122$$1G:(DE-HGF)POF4-120$$2G:(DE-HGF)POF4-100$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-1222$$aDE-HGF$$bForschungsbereich Energie$$lMaterialien und Technologien für die Energiewende (MTET)$$vElektrochemische Energiespeicherung$$x1 001024359 9141_ $$y2024 001024359 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bJ COLLOID INTERF SCI : 2022$$d2023-10-21 001024359 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2023-10-21 001024359 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2023-10-21 001024359 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search$$d2023-10-21 001024359 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC$$d2023-10-21 001024359 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2023-10-21 001024359 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2023-10-21 001024359 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2023-10-21 001024359 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2023-10-21 001024359 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences$$d2023-10-21 001024359 915__ $$0StatID:(DE-HGF)9905$$2StatID$$aIF >= 5$$bJ COLLOID INTERF SCI : 2022$$d2023-10-21 001024359 920__ $$lyes 001024359 9201_ $$0I:(DE-Juel1)IEK-12-20141217$$kIEK-12$$lHelmholtz-Institut Münster Ionenleiter für Energiespeicher$$x0 001024359 980__ $$ajournal 001024359 980__ $$aVDB 001024359 980__ $$aI:(DE-Juel1)IEK-12-20141217 001024359 980__ $$aUNRESTRICTED 001024359 981__ $$aI:(DE-Juel1)IMD-4-20141217