001 | 1024359 | ||
005 | 20250203103119.0 | ||
024 | 7 | _ | |a 10.1016/j.jcis.2023.06.147 |2 doi |
024 | 7 | _ | |a 0021-9797 |2 ISSN |
024 | 7 | _ | |a 1095-7103 |2 ISSN |
024 | 7 | _ | |a 37390528 |2 pmid |
024 | 7 | _ | |a WOS:001053981200001 |2 WOS |
037 | _ | _ | |a FZJ-2024-02115 |
082 | _ | _ | |a 540 |
100 | 1 | _ | |a Pan, Shih-Huang |0 0000-0001-9961-5731 |b 0 |
245 | _ | _ | |a Synergistic dual electrolyte additives for fluoride rich solid-electrolyte interface on Li metal anode surface: Mechanistic understanding of electrolyte decomposition |
260 | _ | _ | |a Amsterdam [u.a.] |c 2023 |b Elsevier |
336 | 7 | _ | |a article |2 DRIVER |
336 | 7 | _ | |a Output Types/Journal article |2 DataCite |
336 | 7 | _ | |a Journal Article |b journal |m journal |0 PUB:(DE-HGF)16 |s 1712762139_24401 |2 PUB:(DE-HGF) |
336 | 7 | _ | |a ARTICLE |2 BibTeX |
336 | 7 | _ | |a JOURNAL_ARTICLE |2 ORCID |
336 | 7 | _ | |a Journal Article |0 0 |2 EndNote |
520 | _ | _ | |a Improving the quality of the solid-electrolyte interphase (SEI) layer is highly imperative to stabilize the Li-metal anodes for the practical application of high-energy–density batteries. However, controllably managing the formation of robust SEI layers on the anode is challenging in state-of-the-art electrolytes. Herein, we discuss the role of dual additives fluoroethylene carbonate (FEC) and lithium difluorophosphate (LiPO2F2, LiPF) within the commercial electrolyte mixture (LiPF6/EC/DEC) considering their reactivity with Li metal anodes using density functional theory (DFT) and ab initio molecular dynamics (AIMD) simulations. Synergistic effects of dual additives on SEI formation mechanisms are explored systematically by invoking different electrolyte mixtures including pure electrolyte (LP47), mono-additive (LP47/FEC and LP47/LiPF), and dual additives (LP47/FEC/LiPF). The present work suggests that the addition of dual additives accelerates the reduction of salt and additives while increasing the formation of a LiF-rich SEI layer. In addition, calculated atomic charges are applied to predict the representative F1s X-ray photoelectron (XPS) signal, and our results agree well with the experimentally identified SEI components. The nature of carbon and oxygen-containing groups resulting from the electrolyte decompositions at the anode surface is also analyzed. We find that the presence of dual additives inhibits undesirable solvent degradation in the respective mixtures, which effectively restricts the hazardous side products at the electrolyte-anode interface and improves SEI layer quality. |
536 | _ | _ | |a 1223 - Batteries in Application (POF4-122) |0 G:(DE-HGF)POF4-1223 |c POF4-122 |f POF IV |x 0 |
536 | _ | _ | |a 1222 - Components and Cells (POF4-122) |0 G:(DE-HGF)POF4-1222 |c POF4-122 |f POF IV |x 1 |
536 | _ | _ | |a LiBEST2 - Lithium-Batterie-Konzepte mit hoher Energiedichte, Leistung und Sicherheit (13XP0304A) |0 G:(BMBF)13XP0304A |c 13XP0304A |x 2 |
588 | _ | _ | |a Dataset connected to CrossRef, Journals: juser.fz-juelich.de |
700 | 1 | _ | |a Nachimuthu, Santhanamoorthi |0 P:(DE-HGF)0 |b 1 |
700 | 1 | _ | |a Hwang, Bing Joe |0 P:(DE-HGF)0 |b 2 |
700 | 1 | _ | |a Brunklaus, Gunther |0 P:(DE-Juel1)172047 |b 3 |u fzj |
700 | 1 | _ | |a Jiang, Jyh-Chiang |0 P:(DE-HGF)0 |b 4 |e Corresponding author |
773 | _ | _ | |a 10.1016/j.jcis.2023.06.147 |g Vol. 649, p. 804 - 814 |0 PERI:(DE-600)1469021-4 |p 804 - 814 |t Journal of colloid and interface science |v 649 |y 2023 |x 0021-9797 |
856 | 4 | _ | |u https://juser.fz-juelich.de/record/1024359/files/Synergistic%20dual%20electrolyte%20additives%20for%20fluoride%20rich%20solid-electrolyte%20interface%20on%20Li%20metal%20anode%20surface_%20Mechanistic%20understanding%20of%20electrolyte%20decomposition.pdf |y Restricted |
856 | 4 | _ | |u https://juser.fz-juelich.de/record/1024359/files/Synergistic%20dual%20electrolyte%20additives%20for%20fluoride%20rich%20solid-electrolyte%20interface%20on%20Li%20metal%20anode%20surface_%20Mechanistic%20understanding%20of%20electrolyte%20decomposition.gif?subformat=icon |x icon |y Restricted |
856 | 4 | _ | |u https://juser.fz-juelich.de/record/1024359/files/Synergistic%20dual%20electrolyte%20additives%20for%20fluoride%20rich%20solid-electrolyte%20interface%20on%20Li%20metal%20anode%20surface_%20Mechanistic%20understanding%20of%20electrolyte%20decomposition.jpg?subformat=icon-1440 |x icon-1440 |y Restricted |
856 | 4 | _ | |u https://juser.fz-juelich.de/record/1024359/files/Synergistic%20dual%20electrolyte%20additives%20for%20fluoride%20rich%20solid-electrolyte%20interface%20on%20Li%20metal%20anode%20surface_%20Mechanistic%20understanding%20of%20electrolyte%20decomposition.jpg?subformat=icon-180 |x icon-180 |y Restricted |
856 | 4 | _ | |u https://juser.fz-juelich.de/record/1024359/files/Synergistic%20dual%20electrolyte%20additives%20for%20fluoride%20rich%20solid-electrolyte%20interface%20on%20Li%20metal%20anode%20surface_%20Mechanistic%20understanding%20of%20electrolyte%20decomposition.jpg?subformat=icon-640 |x icon-640 |y Restricted |
909 | C | O | |o oai:juser.fz-juelich.de:1024359 |p VDB |
910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 3 |6 P:(DE-Juel1)172047 |
913 | 1 | _ | |a DE-HGF |b Forschungsbereich Energie |l Materialien und Technologien für die Energiewende (MTET) |1 G:(DE-HGF)POF4-120 |0 G:(DE-HGF)POF4-122 |3 G:(DE-HGF)POF4 |2 G:(DE-HGF)POF4-100 |4 G:(DE-HGF)POF |v Elektrochemische Energiespeicherung |9 G:(DE-HGF)POF4-1223 |x 0 |
913 | 1 | _ | |a DE-HGF |b Forschungsbereich Energie |l Materialien und Technologien für die Energiewende (MTET) |1 G:(DE-HGF)POF4-120 |0 G:(DE-HGF)POF4-122 |3 G:(DE-HGF)POF4 |2 G:(DE-HGF)POF4-100 |4 G:(DE-HGF)POF |v Elektrochemische Energiespeicherung |9 G:(DE-HGF)POF4-1222 |x 1 |
914 | 1 | _ | |y 2024 |
915 | _ | _ | |a JCR |0 StatID:(DE-HGF)0100 |2 StatID |b J COLLOID INTERF SCI : 2022 |d 2023-10-21 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0200 |2 StatID |b SCOPUS |d 2023-10-21 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0300 |2 StatID |b Medline |d 2023-10-21 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0600 |2 StatID |b Ebsco Academic Search |d 2023-10-21 |
915 | _ | _ | |a Peer Review |0 StatID:(DE-HGF)0030 |2 StatID |b ASC |d 2023-10-21 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0199 |2 StatID |b Clarivate Analytics Master Journal List |d 2023-10-21 |
915 | _ | _ | |a WoS |0 StatID:(DE-HGF)0113 |2 StatID |b Science Citation Index Expanded |d 2023-10-21 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0150 |2 StatID |b Web of Science Core Collection |d 2023-10-21 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0160 |2 StatID |b Essential Science Indicators |d 2023-10-21 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1150 |2 StatID |b Current Contents - Physical, Chemical and Earth Sciences |d 2023-10-21 |
915 | _ | _ | |a IF >= 5 |0 StatID:(DE-HGF)9905 |2 StatID |b J COLLOID INTERF SCI : 2022 |d 2023-10-21 |
920 | _ | _ | |l yes |
920 | 1 | _ | |0 I:(DE-Juel1)IEK-12-20141217 |k IEK-12 |l Helmholtz-Institut Münster Ionenleiter für Energiespeicher |x 0 |
980 | _ | _ | |a journal |
980 | _ | _ | |a VDB |
980 | _ | _ | |a I:(DE-Juel1)IEK-12-20141217 |
980 | _ | _ | |a UNRESTRICTED |
981 | _ | _ | |a I:(DE-Juel1)IMD-4-20141217 |
Library | Collection | CLSMajor | CLSMinor | Language | Author |
---|