001024360 001__ 1024360
001024360 005__ 20250203103119.0
001024360 0247_ $$2doi$$a10.1021/acsaem.3c00208
001024360 0247_ $$2WOS$$aWOS:000974383800001
001024360 037__ $$aFZJ-2024-02116
001024360 082__ $$a540
001024360 1001_ $$0P:(DE-HGF)0$$aOlana, Bikila Nagasa$$b0
001024360 245__ $$aIn Situ Diffuse Reflectance Infrared Fourier-Transform Spectroscopy Investigation of Fluoroethylene Carbonate and Lithium Difluorophosphate Dual Additives in SEI Formation over Cu Anode
001024360 260__ $$aWashington, DC$$bACS Publications$$c2023
001024360 3367_ $$2DRIVER$$aarticle
001024360 3367_ $$2DataCite$$aOutput Types/Journal article
001024360 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1712737154_24403
001024360 3367_ $$2BibTeX$$aARTICLE
001024360 3367_ $$2ORCID$$aJOURNAL_ARTICLE
001024360 3367_ $$00$$2EndNote$$aJournal Article
001024360 520__ $$aThe synergetic effect of fluoroethylene carbonate (FEC) and lithium difluorophosphate (LiPO2F2) dual additives on the cycling stability of lithium metal batteries has been previously reported. This study applies in situ diffuse reflectance infrared Fourier-transform spectroscopy (DRIFTS) to examine the impact of these two additives on SEI species formation over Cu anode using a base electrolyte of LiPF6 in ethylene carbonate (EC) and diethyl carbonate (DEC). The results indicate that all electrolyte components and additives can be electrochemically reduced over the Cu anode following a potential sequence of LiPO2F2 > FEC > EC > DEC. The results illustrate that LiPF6 likely interacts with the Cu anode upon contact, resulting in LixPFy, which can lead to a reduction peak at ∼1.44 V in CV. With the base electrolyte, reduced species from LixPFy lead to the formation of alkyl phosphorus fluorides (RPF), which can be suppressed by the presence of FEC and/or LiPO2F2. Similar to previous reports, FEC reduction in the 1st lithiation cycle leads to the continuous formation of poly(FEC), while EC is electrochemically reduced to (CH2OCO2Li)2 and Li2CO3 and DEC is reduced to CH3CH2OCO2Li and Li2CO3. With only the LiPO2F2 additive, the redox of LiPO2F2 can be found in CV with LixPOy as the possible reduced product. In addition, Li2CO3 formation from EC and DEC reduction was relatively suppressed by the presence of LiPO2F2. The simultaneous presence of the FEC additive can suppress the redox of LiPO2F2 and partly the decomposition of LiPF6 likely via the preferential adsorption of FEC on Cu. Similar DRIFTS observations are found over the Li anode. The electrolyte with dual additives demonstrates a possible advantage from poly(FEC) and LixPOy species formation, suppressing the reduction of LixPFy, EC, and DEC though not completely.
001024360 536__ $$0G:(DE-HGF)POF4-1223$$a1223 - Batteries in Application (POF4-122)$$cPOF4-122$$fPOF IV$$x0
001024360 536__ $$0G:(DE-HGF)POF4-1222$$a1222 - Components and Cells (POF4-122)$$cPOF4-122$$fPOF IV$$x1
001024360 588__ $$aDataset connected to CrossRef, Journals: juser.fz-juelich.de
001024360 7001_ $$0P:(DE-HGF)0$$aAdem, Leyela Hassen$$b1
001024360 7001_ $$0P:(DE-HGF)0$$aLin, Shawn D.$$b2$$eCorresponding author
001024360 7001_ $$0P:(DE-HGF)0$$aHwang, Bing-Joe$$b3$$eCorresponding author
001024360 7001_ $$0P:(DE-Juel1)174519$$aHsieh, Yi-Chen$$b4
001024360 7001_ $$0P:(DE-Juel1)172047$$aBrunklaus, Gunther$$b5
001024360 7001_ $$0P:(DE-Juel1)166130$$aWinter, Martin$$b6
001024360 773__ $$0PERI:(DE-600)2916551-9$$a10.1021/acsaem.3c00208$$gVol. 6, no. 9, p. 4800 - 4809$$n9$$p4800 - 4809$$tACS applied energy materials$$v6$$x2574-0962$$y2023
001024360 8564_ $$uhttps://juser.fz-juelich.de/record/1024360/files/olana-et-al-2023-in-situ-diffuse-reflectance-infrared-fourier-transform-spectroscopy-investigation-of-fluoroethylene.pdf$$yRestricted
001024360 8564_ $$uhttps://juser.fz-juelich.de/record/1024360/files/olana-et-al-2023-in-situ-diffuse-reflectance-infrared-fourier-transform-spectroscopy-investigation-of-fluoroethylene.gif?subformat=icon$$xicon$$yRestricted
001024360 8564_ $$uhttps://juser.fz-juelich.de/record/1024360/files/olana-et-al-2023-in-situ-diffuse-reflectance-infrared-fourier-transform-spectroscopy-investigation-of-fluoroethylene.jpg?subformat=icon-1440$$xicon-1440$$yRestricted
001024360 8564_ $$uhttps://juser.fz-juelich.de/record/1024360/files/olana-et-al-2023-in-situ-diffuse-reflectance-infrared-fourier-transform-spectroscopy-investigation-of-fluoroethylene.jpg?subformat=icon-180$$xicon-180$$yRestricted
001024360 8564_ $$uhttps://juser.fz-juelich.de/record/1024360/files/olana-et-al-2023-in-situ-diffuse-reflectance-infrared-fourier-transform-spectroscopy-investigation-of-fluoroethylene.jpg?subformat=icon-640$$xicon-640$$yRestricted
001024360 909CO $$ooai:juser.fz-juelich.de:1024360$$pVDB
001024360 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)172047$$aForschungszentrum Jülich$$b5$$kFZJ
001024360 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)166130$$aForschungszentrum Jülich$$b6$$kFZJ
001024360 9131_ $$0G:(DE-HGF)POF4-122$$1G:(DE-HGF)POF4-120$$2G:(DE-HGF)POF4-100$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-1223$$aDE-HGF$$bForschungsbereich Energie$$lMaterialien und Technologien für die Energiewende (MTET)$$vElektrochemische Energiespeicherung$$x0
001024360 9131_ $$0G:(DE-HGF)POF4-122$$1G:(DE-HGF)POF4-120$$2G:(DE-HGF)POF4-100$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-1222$$aDE-HGF$$bForschungsbereich Energie$$lMaterialien und Technologien für die Energiewende (MTET)$$vElektrochemische Energiespeicherung$$x1
001024360 9141_ $$y2024
001024360 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bACS APPL ENERG MATER : 2022$$d2023-08-25
001024360 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2023-08-25
001024360 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2023-08-25
001024360 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2023-08-25
001024360 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2023-08-25
001024360 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2023-08-25
001024360 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2023-08-25
001024360 915__ $$0StatID:(DE-HGF)1160$$2StatID$$aDBCoverage$$bCurrent Contents - Engineering, Computing and Technology$$d2023-08-25
001024360 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences$$d2023-08-25
001024360 915__ $$0StatID:(DE-HGF)9905$$2StatID$$aIF >= 5$$bACS APPL ENERG MATER : 2022$$d2023-08-25
001024360 920__ $$lyes
001024360 9201_ $$0I:(DE-Juel1)IEK-12-20141217$$kIEK-12$$lHelmholtz-Institut Münster Ionenleiter für Energiespeicher$$x0
001024360 980__ $$ajournal
001024360 980__ $$aVDB
001024360 980__ $$aI:(DE-Juel1)IEK-12-20141217
001024360 980__ $$aUNRESTRICTED
001024360 981__ $$aI:(DE-Juel1)IMD-4-20141217