001024361 001__ 1024361
001024361 005__ 20240712113052.0
001024361 0247_ $$2doi$$a10.1021/acssuschemeng.2c01712
001024361 0247_ $$2WOS$$aWOS:000809046600018
001024361 037__ $$aFZJ-2024-02117
001024361 082__ $$a540
001024361 1001_ $$0P:(DE-HGF)0$$aWu, Yi−Shiuan$$b0
001024361 245__ $$aCoating of a Novel Lithium-Containing Hybrid Oligomer Additive on Nickel-Rich LiNi 0.8 Co 0.1 Mn 0.1 O 2 Cathode Materials for High-Stability and High-Safety Lithium-Ion Batteries
001024361 260__ $$aWashington, DC$$bACS Publ.$$c2022
001024361 3367_ $$2DRIVER$$aarticle
001024361 3367_ $$2DataCite$$aOutput Types/Journal article
001024361 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1712839837_18267
001024361 3367_ $$2BibTeX$$aARTICLE
001024361 3367_ $$2ORCID$$aJOURNAL_ARTICLE
001024361 3367_ $$00$$2EndNote$$aJournal Article
001024361 500__ $$aZudem unterstützt durch BMBF Projekt: 03XP0304D
001024361 520__ $$aIn this study, we synthesized a Li-containing “BTJ-L” hybrid oligomer─obtained through polymerization of bismaleimide (BMI) with a polyether monoamine (i.e., Jeffamine-M1000, JA), trithiocyanuric acid (TCA), and LiOH─and coated it as an additive in various amounts (0.5–2 wt %) onto the surface of a Ni-rich LiNi0.8Co0.1Mn0.1O2 (NCM811) cathode active material, forming BTJ-L@NCM811 electrodes for lithium-ion batteries (LIBs). Relative to CR2032 coin-type cells incorporating a pristine NCM811 electrode, the cells with the 1 wt % BTJ-L@NCM811 electrode demonstrated a slightly higher initial discharge capacity (173 mAh g–1 vs171 mAh g–1) and higher values of average Coulombic efficiency, CEavg (99.5% vs98.9%) and capacity retention, CR (86.1% vs72.9%) after 100 cycles at 1C. Electrochemical impedance spectroscopy revealed that the decrease in the charge transfer resistance (Rct: 46.7 Ω vs171.1 Ω) and the superior Li+ ion diffusivity (DLi+: ∼1.09 × 10–12 cm2 s–1 vs ∼1.61 × 10–13 cm2 s–1) of the cells incorporating the BTJ-L@NCM811 electrode after cycling at 1C could be attributed to the excellent wettability toward the electrolyte and the extra Li+ ions contributed by the hybrid BTJ-L oligomer additive. Therefore, the BTJ-L oligomer coating layer functioned much like an artificial cathode electrolyte interphase (CEI) layer, impairing the dissolution of transition metals (TMs) from the cathode materials into the carbonate-based electrolytes. Furthermore, insitu microcalorimetry manifested that the total exothermic heat generation (Qt) of the coin cells containing the 1 wt % BTJ-L@NCM811 electrode operating at 1C in isothermal modes (35 and 55 °C) during the charging process was dramatically lower (by ca. 45%) relative to that of the cells incorporating the pristine NCM811 electrode. On the basis of an ARC-HWS analysis, the delithiated pristine NCM811 electrode shows thermal reactivity with the electrolyte at a much earlier stage in comparison to the 1 wt % BTJ-L@NCM811 counterpart (843 min vs 1039 min) between 171 and 192 °C. Thus, Ni-rich NCM811 cathode materials coated with trace amounts (i.e., 1 wt %) of the BTJ211-L1 hybrid oligomer additives displayed both enhanced electrochemical performance and remarkably improved thermal stability. Accordingly, this Li-containing BTJ-L hybrid oligomer appears to be a great candidate material for coating high-Ni oxide cathode materials to enhance the safety and electrochemical performance of LIB cells.
001024361 536__ $$0G:(DE-HGF)POF4-1223$$a1223 - Batteries in Application (POF4-122)$$cPOF4-122$$fPOF IV$$x0
001024361 536__ $$0G:(DE-HGF)POF4-1222$$a1222 - Components and Cells (POF4-122)$$cPOF4-122$$fPOF IV$$x1
001024361 536__ $$0G:(BMBF)13XP0304A$$aLiBEST2 - Lithium-Batterie-Konzepte mit hoher Energiedichte, Leistung und Sicherheit (13XP0304A)$$c13XP0304A$$x2
001024361 588__ $$aDataset connected to CrossRef, Journals: juser.fz-juelich.de
001024361 7001_ $$0P:(DE-HGF)0$$aPham, Quoc-Thai$$b1
001024361 7001_ $$0P:(DE-HGF)0$$aYang, Chun-Chen$$b2$$eCorresponding author
001024361 7001_ $$0P:(DE-HGF)0$$aChern, Chorng-Shyan$$b3
001024361 7001_ $$0P:(DE-HGF)0$$aBabulal, Lakshmipriya Musuvadhi$$b4
001024361 7001_ $$0P:(DE-HGF)0$$aSeenivasan, Manojkumar$$b5
001024361 7001_ $$0P:(DE-HGF)0$$aJeyakumar, Juliya$$b6
001024361 7001_ $$0P:(DE-HGF)0$$aMengesha, Tadesu Hailu$$b7
001024361 7001_ $$0P:(DE-HGF)0$$aPlacke, Tobias$$b8
001024361 7001_ $$0P:(DE-Juel1)172047$$aBrunklaus, Gunther$$b9
001024361 7001_ $$0P:(DE-Juel1)166130$$aWinter, Martin$$b10
001024361 7001_ $$0P:(DE-HGF)0$$aHwang, Bing Joe$$b11$$eCorresponding author
001024361 773__ $$0PERI:(DE-600)2695697-4$$a10.1021/acssuschemeng.2c01712$$gVol. 10, no. 22, p. 7394 - 7408$$n22$$p7394 - 7408$$tACS sustainable chemistry & engineering$$v10$$x2168-0485$$y2022
001024361 8564_ $$uhttps://juser.fz-juelich.de/record/1024361/files/wu-et-al-2022-coating-of-a-novel-lithium-containing-hybrid-oligomer-additive-on-nickel-rich-lini0-8co0-1mn0-1o2-cathode.pdf$$yRestricted
001024361 8564_ $$uhttps://juser.fz-juelich.de/record/1024361/files/wu-et-al-2022-coating-of-a-novel-lithium-containing-hybrid-oligomer-additive-on-nickel-rich-lini0-8co0-1mn0-1o2-cathode.gif?subformat=icon$$xicon$$yRestricted
001024361 8564_ $$uhttps://juser.fz-juelich.de/record/1024361/files/wu-et-al-2022-coating-of-a-novel-lithium-containing-hybrid-oligomer-additive-on-nickel-rich-lini0-8co0-1mn0-1o2-cathode.jpg?subformat=icon-1440$$xicon-1440$$yRestricted
001024361 8564_ $$uhttps://juser.fz-juelich.de/record/1024361/files/wu-et-al-2022-coating-of-a-novel-lithium-containing-hybrid-oligomer-additive-on-nickel-rich-lini0-8co0-1mn0-1o2-cathode.jpg?subformat=icon-180$$xicon-180$$yRestricted
001024361 8564_ $$uhttps://juser.fz-juelich.de/record/1024361/files/wu-et-al-2022-coating-of-a-novel-lithium-containing-hybrid-oligomer-additive-on-nickel-rich-lini0-8co0-1mn0-1o2-cathode.jpg?subformat=icon-640$$xicon-640$$yRestricted
001024361 909CO $$ooai:juser.fz-juelich.de:1024361$$pVDB
001024361 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)172047$$aForschungszentrum Jülich$$b9$$kFZJ
001024361 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)166130$$aForschungszentrum Jülich$$b10$$kFZJ
001024361 9131_ $$0G:(DE-HGF)POF4-122$$1G:(DE-HGF)POF4-120$$2G:(DE-HGF)POF4-100$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-1223$$aDE-HGF$$bForschungsbereich Energie$$lMaterialien und Technologien für die Energiewende (MTET)$$vElektrochemische Energiespeicherung$$x0
001024361 9131_ $$0G:(DE-HGF)POF4-122$$1G:(DE-HGF)POF4-120$$2G:(DE-HGF)POF4-100$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-1222$$aDE-HGF$$bForschungsbereich Energie$$lMaterialien und Technologien für die Energiewende (MTET)$$vElektrochemische Energiespeicherung$$x1
001024361 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bACS SUSTAIN CHEM ENG : 2022$$d2023-10-26
001024361 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2023-10-26
001024361 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2023-10-26
001024361 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2023-10-26
001024361 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2023-10-26
001024361 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2023-10-26
001024361 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2023-10-26
001024361 915__ $$0StatID:(DE-HGF)1160$$2StatID$$aDBCoverage$$bCurrent Contents - Engineering, Computing and Technology$$d2023-10-26
001024361 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences$$d2023-10-26
001024361 915__ $$0StatID:(DE-HGF)9905$$2StatID$$aIF >= 5$$bACS SUSTAIN CHEM ENG : 2022$$d2023-10-26
001024361 920__ $$lyes
001024361 9201_ $$0I:(DE-Juel1)IEK-12-20141217$$kIEK-12$$lHelmholtz-Institut Münster Ionenleiter für Energiespeicher$$x0
001024361 980__ $$ajournal
001024361 980__ $$aVDB
001024361 980__ $$aI:(DE-Juel1)IEK-12-20141217
001024361 980__ $$aUNRESTRICTED
001024361 981__ $$aI:(DE-Juel1)IMD-4-20141217