001     1024361
005     20240712113052.0
024 7 _ |a 10.1021/acssuschemeng.2c01712
|2 doi
024 7 _ |a WOS:000809046600018
|2 WOS
037 _ _ |a FZJ-2024-02117
082 _ _ |a 540
100 1 _ |a Wu, Yi−Shiuan
|0 P:(DE-HGF)0
|b 0
245 _ _ |a Coating of a Novel Lithium-Containing Hybrid Oligomer Additive on Nickel-Rich LiNi 0.8 Co 0.1 Mn 0.1 O 2 Cathode Materials for High-Stability and High-Safety Lithium-Ion Batteries
260 _ _ |a Washington, DC
|c 2022
|b ACS Publ.
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1712839837_18267
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
500 _ _ |a Zudem unterstützt durch BMBF Projekt: 03XP0304D
520 _ _ |a In this study, we synthesized a Li-containing “BTJ-L” hybrid oligomer─obtained through polymerization of bismaleimide (BMI) with a polyether monoamine (i.e., Jeffamine-M1000, JA), trithiocyanuric acid (TCA), and LiOH─and coated it as an additive in various amounts (0.5–2 wt %) onto the surface of a Ni-rich LiNi0.8Co0.1Mn0.1O2 (NCM811) cathode active material, forming BTJ-L@NCM811 electrodes for lithium-ion batteries (LIBs). Relative to CR2032 coin-type cells incorporating a pristine NCM811 electrode, the cells with the 1 wt % BTJ-L@NCM811 electrode demonstrated a slightly higher initial discharge capacity (173 mAh g–1 vs171 mAh g–1) and higher values of average Coulombic efficiency, CEavg (99.5% vs98.9%) and capacity retention, CR (86.1% vs72.9%) after 100 cycles at 1C. Electrochemical impedance spectroscopy revealed that the decrease in the charge transfer resistance (Rct: 46.7 Ω vs171.1 Ω) and the superior Li+ ion diffusivity (DLi+: ∼1.09 × 10–12 cm2 s–1 vs ∼1.61 × 10–13 cm2 s–1) of the cells incorporating the BTJ-L@NCM811 electrode after cycling at 1C could be attributed to the excellent wettability toward the electrolyte and the extra Li+ ions contributed by the hybrid BTJ-L oligomer additive. Therefore, the BTJ-L oligomer coating layer functioned much like an artificial cathode electrolyte interphase (CEI) layer, impairing the dissolution of transition metals (TMs) from the cathode materials into the carbonate-based electrolytes. Furthermore, insitu microcalorimetry manifested that the total exothermic heat generation (Qt) of the coin cells containing the 1 wt % BTJ-L@NCM811 electrode operating at 1C in isothermal modes (35 and 55 °C) during the charging process was dramatically lower (by ca. 45%) relative to that of the cells incorporating the pristine NCM811 electrode. On the basis of an ARC-HWS analysis, the delithiated pristine NCM811 electrode shows thermal reactivity with the electrolyte at a much earlier stage in comparison to the 1 wt % BTJ-L@NCM811 counterpart (843 min vs 1039 min) between 171 and 192 °C. Thus, Ni-rich NCM811 cathode materials coated with trace amounts (i.e., 1 wt %) of the BTJ211-L1 hybrid oligomer additives displayed both enhanced electrochemical performance and remarkably improved thermal stability. Accordingly, this Li-containing BTJ-L hybrid oligomer appears to be a great candidate material for coating high-Ni oxide cathode materials to enhance the safety and electrochemical performance of LIB cells.
536 _ _ |a 1223 - Batteries in Application (POF4-122)
|0 G:(DE-HGF)POF4-1223
|c POF4-122
|f POF IV
|x 0
536 _ _ |a 1222 - Components and Cells (POF4-122)
|0 G:(DE-HGF)POF4-1222
|c POF4-122
|f POF IV
|x 1
536 _ _ |a LiBEST2 - Lithium-Batterie-Konzepte mit hoher Energiedichte, Leistung und Sicherheit (13XP0304A)
|0 G:(BMBF)13XP0304A
|c 13XP0304A
|x 2
588 _ _ |a Dataset connected to CrossRef, Journals: juser.fz-juelich.de
700 1 _ |a Pham, Quoc-Thai
|0 P:(DE-HGF)0
|b 1
700 1 _ |a Yang, Chun-Chen
|0 P:(DE-HGF)0
|b 2
|e Corresponding author
700 1 _ |a Chern, Chorng-Shyan
|0 P:(DE-HGF)0
|b 3
700 1 _ |a Babulal, Lakshmipriya Musuvadhi
|0 P:(DE-HGF)0
|b 4
700 1 _ |a Seenivasan, Manojkumar
|0 P:(DE-HGF)0
|b 5
700 1 _ |a Jeyakumar, Juliya
|0 P:(DE-HGF)0
|b 6
700 1 _ |a Mengesha, Tadesu Hailu
|0 P:(DE-HGF)0
|b 7
700 1 _ |a Placke, Tobias
|0 P:(DE-HGF)0
|b 8
700 1 _ |a Brunklaus, Gunther
|0 P:(DE-Juel1)172047
|b 9
700 1 _ |a Winter, Martin
|0 P:(DE-Juel1)166130
|b 10
700 1 _ |a Hwang, Bing Joe
|0 P:(DE-HGF)0
|b 11
|e Corresponding author
773 _ _ |a 10.1021/acssuschemeng.2c01712
|g Vol. 10, no. 22, p. 7394 - 7408
|0 PERI:(DE-600)2695697-4
|n 22
|p 7394 - 7408
|t ACS sustainable chemistry & engineering
|v 10
|y 2022
|x 2168-0485
856 4 _ |u https://juser.fz-juelich.de/record/1024361/files/wu-et-al-2022-coating-of-a-novel-lithium-containing-hybrid-oligomer-additive-on-nickel-rich-lini0-8co0-1mn0-1o2-cathode.pdf
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/1024361/files/wu-et-al-2022-coating-of-a-novel-lithium-containing-hybrid-oligomer-additive-on-nickel-rich-lini0-8co0-1mn0-1o2-cathode.gif?subformat=icon
|x icon
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/1024361/files/wu-et-al-2022-coating-of-a-novel-lithium-containing-hybrid-oligomer-additive-on-nickel-rich-lini0-8co0-1mn0-1o2-cathode.jpg?subformat=icon-1440
|x icon-1440
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/1024361/files/wu-et-al-2022-coating-of-a-novel-lithium-containing-hybrid-oligomer-additive-on-nickel-rich-lini0-8co0-1mn0-1o2-cathode.jpg?subformat=icon-180
|x icon-180
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/1024361/files/wu-et-al-2022-coating-of-a-novel-lithium-containing-hybrid-oligomer-additive-on-nickel-rich-lini0-8co0-1mn0-1o2-cathode.jpg?subformat=icon-640
|x icon-640
|y Restricted
909 C O |o oai:juser.fz-juelich.de:1024361
|p VDB
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 9
|6 P:(DE-Juel1)172047
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 10
|6 P:(DE-Juel1)166130
913 1 _ |a DE-HGF
|b Forschungsbereich Energie
|l Materialien und Technologien für die Energiewende (MTET)
|1 G:(DE-HGF)POF4-120
|0 G:(DE-HGF)POF4-122
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-100
|4 G:(DE-HGF)POF
|v Elektrochemische Energiespeicherung
|9 G:(DE-HGF)POF4-1223
|x 0
913 1 _ |a DE-HGF
|b Forschungsbereich Energie
|l Materialien und Technologien für die Energiewende (MTET)
|1 G:(DE-HGF)POF4-120
|0 G:(DE-HGF)POF4-122
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-100
|4 G:(DE-HGF)POF
|v Elektrochemische Energiespeicherung
|9 G:(DE-HGF)POF4-1222
|x 1
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b ACS SUSTAIN CHEM ENG : 2022
|d 2023-10-26
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2023-10-26
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2023-10-26
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2023-10-26
915 _ _ |a WoS
|0 StatID:(DE-HGF)0113
|2 StatID
|b Science Citation Index Expanded
|d 2023-10-26
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2023-10-26
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2023-10-26
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1160
|2 StatID
|b Current Contents - Engineering, Computing and Technology
|d 2023-10-26
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1150
|2 StatID
|b Current Contents - Physical, Chemical and Earth Sciences
|d 2023-10-26
915 _ _ |a IF >= 5
|0 StatID:(DE-HGF)9905
|2 StatID
|b ACS SUSTAIN CHEM ENG : 2022
|d 2023-10-26
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)IEK-12-20141217
|k IEK-12
|l Helmholtz-Institut Münster Ionenleiter für Energiespeicher
|x 0
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a I:(DE-Juel1)IEK-12-20141217
980 _ _ |a UNRESTRICTED
981 _ _ |a I:(DE-Juel1)IMD-4-20141217


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21