001024364 001__ 1024364
001024364 005__ 20240712113048.0
001024364 0247_ $$2doi$$a10.1016/j.xcrp.2020.100139
001024364 0247_ $$2datacite_doi$$a10.34734/FZJ-2024-02120
001024364 0247_ $$2WOS$$aWOS:000658750600006
001024364 037__ $$aFZJ-2024-02120
001024364 082__ $$a530
001024364 1001_ $$0P:(DE-Juel1)174519$$aHsieh, Yi-Chen$$b0
001024364 245__ $$aQuantification of Dead Lithium via In Situ Nuclear Magnetic Resonance Spectroscopy
001024364 260__ $$a[New York, NY]$$bElsevier$$c2020
001024364 3367_ $$2DRIVER$$aarticle
001024364 3367_ $$2DataCite$$aOutput Types/Journal article
001024364 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1712826062_17705
001024364 3367_ $$2BibTeX$$aARTICLE
001024364 3367_ $$2ORCID$$aJOURNAL_ARTICLE
001024364 3367_ $$00$$2EndNote$$aJournal Article
001024364 520__ $$aInhomogeneous lithium deposition or dendrite formation and occurrence of ‘‘dead lithium’’ fractions are challenging issues, hampering the commercial application of lithium metal batteries. Conditions and strategies for minimizing potential failure of lithium metal anodes are currently not fully understood, despite recent progress. We report a protocol utilizing in situ and ex situ 7 Li solid-state NMR spectroscopy to quantify irreversible lithium losses in batteries, clearly distinguishing losses due to SEI formation and fractions of ‘‘dead lithium,’’ revealing a distribution of different lithium metal microstructures on both working and counter elec- trodes upon plating and stripping. Estimates of dead lithium fractions of 3.3% G 0.6% (with 5% FEC) and 9.4% G 0.6% (without 5% FEC) are determined. The proposed protocol affords benchmarking of commercial cells, including future design of suitable strategies for effective development and tailoring of electrolyte formulations, fostering further advancement of high-performance energy storage applications.
001024364 536__ $$0G:(DE-HGF)POF4-1223$$a1223 - Batteries in Application (POF4-122)$$cPOF4-122$$fPOF IV$$x0
001024364 536__ $$0G:(DE-HGF)POF4-1222$$a1222 - Components and Cells (POF4-122)$$cPOF4-122$$fPOF IV$$x1
001024364 536__ $$0G:(BMBF)13XP0133A$$aLiBEST - Lithium-Ionen-Akku mit hoher elektrochemischer Leistung und Sicherheit (13XP0133A)$$c13XP0133A$$x2
001024364 536__ $$0G:(BMBF)13XP0224A$$aLiSi - Lithium-Solid-Electrolyte Interfaces (13XP0224A)$$c13XP0224A$$x3
001024364 588__ $$aDataset connected to CrossRef, Journals: juser.fz-juelich.de
001024364 7001_ $$0P:(DE-HGF)0$$aLeißing, Marco$$b1
001024364 7001_ $$0P:(DE-HGF)0$$aNowak, Sascha$$b2
001024364 7001_ $$0P:(DE-Juel1)188933$$aHwang, Bing-Joe$$b3
001024364 7001_ $$0P:(DE-Juel1)166130$$aWinter, Martin$$b4$$ufzj
001024364 7001_ $$0P:(DE-Juel1)172047$$aBrunklaus, Gunther$$b5$$eCorresponding author$$ufzj
001024364 773__ $$0PERI:(DE-600)3015727-4$$a10.1016/j.xcrp.2020.100139$$gVol. 1, no. 8, p. 100139 -$$n8$$p100139 -$$tCell reports / Physical science$$v1$$x2666-3864$$y2020
001024364 8564_ $$uhttps://juser.fz-juelich.de/record/1024364/files/Quantification%20of%20Dead%20Lithium%20via%20In%20Situ%20Nuclear%20Magnetic%20Resonance%20Spectroscopy.pdf$$yOpenAccess
001024364 8564_ $$uhttps://juser.fz-juelich.de/record/1024364/files/Quantification%20of%20Dead%20Lithium%20via%20In%20Situ%20Nuclear%20Magnetic%20Resonance%20Spectroscopy.gif?subformat=icon$$xicon$$yOpenAccess
001024364 8564_ $$uhttps://juser.fz-juelich.de/record/1024364/files/Quantification%20of%20Dead%20Lithium%20via%20In%20Situ%20Nuclear%20Magnetic%20Resonance%20Spectroscopy.jpg?subformat=icon-1440$$xicon-1440$$yOpenAccess
001024364 8564_ $$uhttps://juser.fz-juelich.de/record/1024364/files/Quantification%20of%20Dead%20Lithium%20via%20In%20Situ%20Nuclear%20Magnetic%20Resonance%20Spectroscopy.jpg?subformat=icon-180$$xicon-180$$yOpenAccess
001024364 8564_ $$uhttps://juser.fz-juelich.de/record/1024364/files/Quantification%20of%20Dead%20Lithium%20via%20In%20Situ%20Nuclear%20Magnetic%20Resonance%20Spectroscopy.jpg?subformat=icon-640$$xicon-640$$yOpenAccess
001024364 909CO $$ooai:juser.fz-juelich.de:1024364$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire
001024364 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)166130$$aForschungszentrum Jülich$$b4$$kFZJ
001024364 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)172047$$aForschungszentrum Jülich$$b5$$kFZJ
001024364 9131_ $$0G:(DE-HGF)POF4-122$$1G:(DE-HGF)POF4-120$$2G:(DE-HGF)POF4-100$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-1223$$aDE-HGF$$bForschungsbereich Energie$$lMaterialien und Technologien für die Energiewende (MTET)$$vElektrochemische Energiespeicherung$$x0
001024364 9131_ $$0G:(DE-HGF)POF4-122$$1G:(DE-HGF)POF4-120$$2G:(DE-HGF)POF4-100$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-1222$$aDE-HGF$$bForschungsbereich Energie$$lMaterialien und Technologien für die Energiewende (MTET)$$vElektrochemische Energiespeicherung$$x1
001024364 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2023-10-27
001024364 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2023-10-27
001024364 915__ $$0StatID:(DE-HGF)1160$$2StatID$$aDBCoverage$$bCurrent Contents - Engineering, Computing and Technology$$d2023-10-27
001024364 915__ $$0LIC:(DE-HGF)CCBYNCND4$$2HGFVOC$$aCreative Commons Attribution-NonCommercial-NoDerivs CC BY-NC-ND 4.0
001024364 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bCELL REP PHYS SCI : 2022$$d2023-10-27
001024364 915__ $$0StatID:(DE-HGF)9905$$2StatID$$aIF >= 5$$bCELL REP PHYS SCI : 2022$$d2023-10-27
001024364 915__ $$0StatID:(DE-HGF)0501$$2StatID$$aDBCoverage$$bDOAJ Seal$$d2023-05-02T08:54:40Z
001024364 915__ $$0StatID:(DE-HGF)0500$$2StatID$$aDBCoverage$$bDOAJ$$d2023-05-02T08:54:40Z
001024364 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2023-10-27
001024364 915__ $$0StatID:(DE-HGF)0700$$2StatID$$aFees$$d2023-10-27
001024364 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2023-10-27
001024364 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
001024364 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bDOAJ : Anonymous peer review$$d2023-05-02T08:54:40Z
001024364 915__ $$0StatID:(DE-HGF)0561$$2StatID$$aArticle Processing Charges$$d2023-10-27
001024364 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences$$d2023-10-27
001024364 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2023-10-27
001024364 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2023-10-27
001024364 920__ $$lyes
001024364 9201_ $$0I:(DE-Juel1)IEK-12-20141217$$kIEK-12$$lHelmholtz-Institut Münster Ionenleiter für Energiespeicher$$x0
001024364 9801_ $$aFullTexts
001024364 980__ $$ajournal
001024364 980__ $$aVDB
001024364 980__ $$aUNRESTRICTED
001024364 980__ $$aI:(DE-Juel1)IEK-12-20141217
001024364 981__ $$aI:(DE-Juel1)IMD-4-20141217