001     1024364
005     20240712113048.0
024 7 _ |a 10.1016/j.xcrp.2020.100139
|2 doi
024 7 _ |a 10.34734/FZJ-2024-02120
|2 datacite_doi
024 7 _ |a WOS:000658750600006
|2 WOS
037 _ _ |a FZJ-2024-02120
082 _ _ |a 530
100 1 _ |a Hsieh, Yi-Chen
|0 P:(DE-Juel1)174519
|b 0
245 _ _ |a Quantification of Dead Lithium via In Situ Nuclear Magnetic Resonance Spectroscopy
260 _ _ |a [New York, NY]
|c 2020
|b Elsevier
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1712826062_17705
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a Inhomogeneous lithium deposition or dendrite formation and occurrence of ‘‘dead lithium’’ fractions are challenging issues, hampering the commercial application of lithium metal batteries. Conditions and strategies for minimizing potential failure of lithium metal anodes are currently not fully understood, despite recent progress. We report a protocol utilizing in situ and ex situ 7 Li solid-state NMR spectroscopy to quantify irreversible lithium losses in batteries, clearly distinguishing losses due to SEI formation and fractions of ‘‘dead lithium,’’ revealing a distribution of different lithium metal microstructures on both working and counter elec- trodes upon plating and stripping. Estimates of dead lithium fractions of 3.3% G 0.6% (with 5% FEC) and 9.4% G 0.6% (without 5% FEC) are determined. The proposed protocol affords benchmarking of commercial cells, including future design of suitable strategies for effective development and tailoring of electrolyte formulations, fostering further advancement of high-performance energy storage applications.
536 _ _ |a 1223 - Batteries in Application (POF4-122)
|0 G:(DE-HGF)POF4-1223
|c POF4-122
|f POF IV
|x 0
536 _ _ |a 1222 - Components and Cells (POF4-122)
|0 G:(DE-HGF)POF4-1222
|c POF4-122
|f POF IV
|x 1
536 _ _ |a LiBEST - Lithium-Ionen-Akku mit hoher elektrochemischer Leistung und Sicherheit (13XP0133A)
|0 G:(BMBF)13XP0133A
|c 13XP0133A
|x 2
536 _ _ |a LiSi - Lithium-Solid-Electrolyte Interfaces (13XP0224A)
|0 G:(BMBF)13XP0224A
|c 13XP0224A
|x 3
588 _ _ |a Dataset connected to CrossRef, Journals: juser.fz-juelich.de
700 1 _ |a Leißing, Marco
|0 P:(DE-HGF)0
|b 1
700 1 _ |a Nowak, Sascha
|0 P:(DE-HGF)0
|b 2
700 1 _ |a Hwang, Bing-Joe
|0 P:(DE-Juel1)188933
|b 3
700 1 _ |a Winter, Martin
|0 P:(DE-Juel1)166130
|b 4
|u fzj
700 1 _ |a Brunklaus, Gunther
|0 P:(DE-Juel1)172047
|b 5
|e Corresponding author
|u fzj
773 _ _ |a 10.1016/j.xcrp.2020.100139
|g Vol. 1, no. 8, p. 100139 -
|0 PERI:(DE-600)3015727-4
|n 8
|p 100139 -
|t Cell reports / Physical science
|v 1
|y 2020
|x 2666-3864
856 4 _ |y OpenAccess
|u https://juser.fz-juelich.de/record/1024364/files/Quantification%20of%20Dead%20Lithium%20via%20In%20Situ%20Nuclear%20Magnetic%20Resonance%20Spectroscopy.pdf
856 4 _ |y OpenAccess
|x icon
|u https://juser.fz-juelich.de/record/1024364/files/Quantification%20of%20Dead%20Lithium%20via%20In%20Situ%20Nuclear%20Magnetic%20Resonance%20Spectroscopy.gif?subformat=icon
856 4 _ |y OpenAccess
|x icon-1440
|u https://juser.fz-juelich.de/record/1024364/files/Quantification%20of%20Dead%20Lithium%20via%20In%20Situ%20Nuclear%20Magnetic%20Resonance%20Spectroscopy.jpg?subformat=icon-1440
856 4 _ |y OpenAccess
|x icon-180
|u https://juser.fz-juelich.de/record/1024364/files/Quantification%20of%20Dead%20Lithium%20via%20In%20Situ%20Nuclear%20Magnetic%20Resonance%20Spectroscopy.jpg?subformat=icon-180
856 4 _ |y OpenAccess
|x icon-640
|u https://juser.fz-juelich.de/record/1024364/files/Quantification%20of%20Dead%20Lithium%20via%20In%20Situ%20Nuclear%20Magnetic%20Resonance%20Spectroscopy.jpg?subformat=icon-640
909 C O |o oai:juser.fz-juelich.de:1024364
|p openaire
|p open_access
|p VDB
|p driver
|p dnbdelivery
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 4
|6 P:(DE-Juel1)166130
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 5
|6 P:(DE-Juel1)172047
913 1 _ |a DE-HGF
|b Forschungsbereich Energie
|l Materialien und Technologien für die Energiewende (MTET)
|1 G:(DE-HGF)POF4-120
|0 G:(DE-HGF)POF4-122
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-100
|4 G:(DE-HGF)POF
|v Elektrochemische Energiespeicherung
|9 G:(DE-HGF)POF4-1223
|x 0
913 1 _ |a DE-HGF
|b Forschungsbereich Energie
|l Materialien und Technologien für die Energiewende (MTET)
|1 G:(DE-HGF)POF4-120
|0 G:(DE-HGF)POF4-122
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-100
|4 G:(DE-HGF)POF
|v Elektrochemische Energiespeicherung
|9 G:(DE-HGF)POF4-1222
|x 1
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2023-10-27
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2023-10-27
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1160
|2 StatID
|b Current Contents - Engineering, Computing and Technology
|d 2023-10-27
915 _ _ |a Creative Commons Attribution-NonCommercial-NoDerivs CC BY-NC-ND 4.0
|0 LIC:(DE-HGF)CCBYNCND4
|2 HGFVOC
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b CELL REP PHYS SCI : 2022
|d 2023-10-27
915 _ _ |a IF >= 5
|0 StatID:(DE-HGF)9905
|2 StatID
|b CELL REP PHYS SCI : 2022
|d 2023-10-27
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0501
|2 StatID
|b DOAJ Seal
|d 2023-05-02T08:54:40Z
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0500
|2 StatID
|b DOAJ
|d 2023-05-02T08:54:40Z
915 _ _ |a WoS
|0 StatID:(DE-HGF)0113
|2 StatID
|b Science Citation Index Expanded
|d 2023-10-27
915 _ _ |a Fees
|0 StatID:(DE-HGF)0700
|2 StatID
|d 2023-10-27
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2023-10-27
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b DOAJ : Anonymous peer review
|d 2023-05-02T08:54:40Z
915 _ _ |a Article Processing Charges
|0 StatID:(DE-HGF)0561
|2 StatID
|d 2023-10-27
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1150
|2 StatID
|b Current Contents - Physical, Chemical and Earth Sciences
|d 2023-10-27
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2023-10-27
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2023-10-27
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)IEK-12-20141217
|k IEK-12
|l Helmholtz-Institut Münster Ionenleiter für Energiespeicher
|x 0
980 1 _ |a FullTexts
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)IEK-12-20141217
981 _ _ |a I:(DE-Juel1)IMD-4-20141217


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21