001024374 001__ 1024374
001024374 005__ 20250203103120.0
001024374 0247_ $$2doi$$a10.1016/j.mtchem.2023.101587
001024374 0247_ $$2datacite_doi$$a10.34734/FZJ-2024-02124
001024374 0247_ $$2WOS$$aWOS:001017064200001
001024374 037__ $$aFZJ-2024-02124
001024374 082__ $$a600
001024374 1001_ $$0P:(DE-Juel1)176765$$aEsen, E.$$b0
001024374 245__ $$aEffect of prelithiation with passivated lithium metal powder on passivation films on high-energy NMC-811 and SiCx electrodes
001024374 260__ $$aAmsterdam [u.a.]$$bElsevier Ltd.$$c2023
001024374 3367_ $$2DRIVER$$aarticle
001024374 3367_ $$2DataCite$$aOutput Types/Journal article
001024374 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1712739434_24402
001024374 3367_ $$2BibTeX$$aARTICLE
001024374 3367_ $$2ORCID$$aJOURNAL_ARTICLE
001024374 3367_ $$00$$2EndNote$$aJournal Article
001024374 520__ $$aThe effect of prelithiation using passivated lithium metal powder (PLMP) pressed onto SiCx anodes is reported for NMC-811‖ SiCx cells with high energy mass loadings. The effect of prelithiation degree and storage time after cell assembly on the formation and growth of the solid electrolyte interphase (SEI) was elucidated by impedance spectroscopy (EIS) and operando solid-state 7Li nuclear magnetic resonance (NMR) spectroscopy, which allowed determining the optimal storage period for the prelithiated cells. The galvanostatic intermittent titration technique (GITT) was used to compare apparent Li+ diffusion coefficients in prelithiated and non-prelithiated SiCx electrodes. Furthermore, we show that the electrochemical performance of NMC-811‖ SiCx cells can be dramatically improved by prelithiation using PLMP. In particular, cycle life at 80% state of health (SoH) is almost tripled, increasing from 80 to 228 cycles. Moreover, X-ray photoelectron spectroscopy (XPS) and energy dispersive X-ray (EDX) analysis show that the composition of the cathode electrolyte interphase (CEI) is also markedly modified compared with non-prelithiated reference cells. In particular, the amount of LixPFyOz species is reduced as prelithiation using PLMP promotes a more effective SEI layer on the SiCx electrode, richer in LiF and Li3PO4, and richer in organic components that probably also contribute to the enhanced cycling stability.
001024374 536__ $$0G:(DE-HGF)POF4-1223$$a1223 - Batteries in Application (POF4-122)$$cPOF4-122$$fPOF IV$$x0
001024374 536__ $$0G:(DE-HGF)POF4-1222$$a1222 - Components and Cells (POF4-122)$$cPOF4-122$$fPOF IV$$x1
001024374 536__ $$0G:(DE-HGF)POF4-1221$$a1221 - Fundamentals and Materials (POF4-122)$$cPOF4-122$$fPOF IV$$x2
001024374 536__ $$0G:(EU-Grant)814389$$aSPIDER - Safe and Prelithiated hIgh energy DEnsity batteries based on sulphur Rocksalt and silicon chemistries (814389)$$c814389$$fH2020-NMBP-ST-IND-2018$$x3
001024374 588__ $$aDataset connected to DataCite
001024374 7001_ $$0P:(DE-Juel1)187471$$aMohrhardt, M.$$b1
001024374 7001_ $$0P:(DE-Juel1)164855$$aLennartz, P.$$b2$$ufzj
001024374 7001_ $$0P:(DE-HGF)0$$ade Meatza, I.$$b3
001024374 7001_ $$0P:(DE-HGF)0$$aSchmuck, M.$$b4
001024374 7001_ $$0P:(DE-Juel1)166130$$aWinter, M.$$b5$$ufzj
001024374 7001_ $$0P:(DE-Juel1)166311$$aPaillard, E.$$b6$$eCorresponding author
001024374 773__ $$0PERI:(DE-600)2879106-X$$a10.1016/j.mtchem.2023.101587$$gVol. 30, p. 101587 -$$p101587 -$$tMaterials today / Chemistry$$v30$$x2468-5194$$y2023
001024374 8564_ $$uhttps://juser.fz-juelich.de/record/1024374/files/Effect%20of%20prelithiation%20with%20passivated%20lithium%20metal%20powder%20on%20passivation%20films%20on%20high-energy%20NMC-811%20and%20SiCx%20electrodes.pdf$$yOpenAccess
001024374 8564_ $$uhttps://juser.fz-juelich.de/record/1024374/files/Effect%20of%20prelithiation%20with%20passivated%20lithium%20metal%20powder%20on%20passivation%20films%20on%20high-energy%20NMC-811%20and%20SiCx%20electrodes.gif?subformat=icon$$xicon$$yOpenAccess
001024374 8564_ $$uhttps://juser.fz-juelich.de/record/1024374/files/Effect%20of%20prelithiation%20with%20passivated%20lithium%20metal%20powder%20on%20passivation%20films%20on%20high-energy%20NMC-811%20and%20SiCx%20electrodes.jpg?subformat=icon-1440$$xicon-1440$$yOpenAccess
001024374 8564_ $$uhttps://juser.fz-juelich.de/record/1024374/files/Effect%20of%20prelithiation%20with%20passivated%20lithium%20metal%20powder%20on%20passivation%20films%20on%20high-energy%20NMC-811%20and%20SiCx%20electrodes.jpg?subformat=icon-180$$xicon-180$$yOpenAccess
001024374 8564_ $$uhttps://juser.fz-juelich.de/record/1024374/files/Effect%20of%20prelithiation%20with%20passivated%20lithium%20metal%20powder%20on%20passivation%20films%20on%20high-energy%20NMC-811%20and%20SiCx%20electrodes.jpg?subformat=icon-640$$xicon-640$$yOpenAccess
001024374 909CO $$ooai:juser.fz-juelich.de:1024374$$pdnbdelivery$$pec_fundedresources$$pVDB$$pdriver$$popen_access$$popenaire
001024374 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)164855$$aForschungszentrum Jülich$$b2$$kFZJ
001024374 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)166130$$aForschungszentrum Jülich$$b5$$kFZJ
001024374 9131_ $$0G:(DE-HGF)POF4-122$$1G:(DE-HGF)POF4-120$$2G:(DE-HGF)POF4-100$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-1223$$aDE-HGF$$bForschungsbereich Energie$$lMaterialien und Technologien für die Energiewende (MTET)$$vElektrochemische Energiespeicherung$$x0
001024374 9131_ $$0G:(DE-HGF)POF4-122$$1G:(DE-HGF)POF4-120$$2G:(DE-HGF)POF4-100$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-1222$$aDE-HGF$$bForschungsbereich Energie$$lMaterialien und Technologien für die Energiewende (MTET)$$vElektrochemische Energiespeicherung$$x1
001024374 9131_ $$0G:(DE-HGF)POF4-122$$1G:(DE-HGF)POF4-120$$2G:(DE-HGF)POF4-100$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-1221$$aDE-HGF$$bForschungsbereich Energie$$lMaterialien und Technologien für die Energiewende (MTET)$$vElektrochemische Energiespeicherung$$x2
001024374 9141_ $$y2024
001024374 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2023-08-26
001024374 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2023-08-26
001024374 915__ $$0StatID:(DE-HGF)1160$$2StatID$$aDBCoverage$$bCurrent Contents - Engineering, Computing and Technology$$d2023-08-26
001024374 915__ $$0LIC:(DE-HGF)CCBY4$$2HGFVOC$$aCreative Commons Attribution CC BY 4.0
001024374 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bMATER TODAY CHEM : 2022$$d2023-08-26
001024374 915__ $$0StatID:(DE-HGF)9905$$2StatID$$aIF >= 5$$bMATER TODAY CHEM : 2022$$d2023-08-26
001024374 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2023-08-26
001024374 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2023-08-26
001024374 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
001024374 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences$$d2023-08-26
001024374 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2023-08-26
001024374 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2023-08-26
001024374 920__ $$lyes
001024374 9201_ $$0I:(DE-Juel1)IEK-12-20141217$$kIEK-12$$lHelmholtz-Institut Münster Ionenleiter für Energiespeicher$$x0
001024374 9801_ $$aFullTexts
001024374 980__ $$ajournal
001024374 980__ $$aVDB
001024374 980__ $$aUNRESTRICTED
001024374 980__ $$aI:(DE-Juel1)IEK-12-20141217
001024374 981__ $$aI:(DE-Juel1)IMD-4-20141217