| Home > Publications database > Effect of prelithiation with passivated lithium metal powder on passivation films on high-energy NMC-811 and SiCx electrodes > print |
| 001 | 1024374 | ||
| 005 | 20250203103120.0 | ||
| 024 | 7 | _ | |a 10.1016/j.mtchem.2023.101587 |2 doi |
| 024 | 7 | _ | |a 10.34734/FZJ-2024-02124 |2 datacite_doi |
| 024 | 7 | _ | |a WOS:001017064200001 |2 WOS |
| 037 | _ | _ | |a FZJ-2024-02124 |
| 082 | _ | _ | |a 600 |
| 100 | 1 | _ | |a Esen, E. |0 P:(DE-Juel1)176765 |b 0 |
| 245 | _ | _ | |a Effect of prelithiation with passivated lithium metal powder on passivation films on high-energy NMC-811 and SiCx electrodes |
| 260 | _ | _ | |a Amsterdam [u.a.] |c 2023 |b Elsevier Ltd. |
| 336 | 7 | _ | |a article |2 DRIVER |
| 336 | 7 | _ | |a Output Types/Journal article |2 DataCite |
| 336 | 7 | _ | |a Journal Article |b journal |m journal |0 PUB:(DE-HGF)16 |s 1712739434_24402 |2 PUB:(DE-HGF) |
| 336 | 7 | _ | |a ARTICLE |2 BibTeX |
| 336 | 7 | _ | |a JOURNAL_ARTICLE |2 ORCID |
| 336 | 7 | _ | |a Journal Article |0 0 |2 EndNote |
| 520 | _ | _ | |a The effect of prelithiation using passivated lithium metal powder (PLMP) pressed onto SiCx anodes is reported for NMC-811‖ SiCx cells with high energy mass loadings. The effect of prelithiation degree and storage time after cell assembly on the formation and growth of the solid electrolyte interphase (SEI) was elucidated by impedance spectroscopy (EIS) and operando solid-state 7Li nuclear magnetic resonance (NMR) spectroscopy, which allowed determining the optimal storage period for the prelithiated cells. The galvanostatic intermittent titration technique (GITT) was used to compare apparent Li+ diffusion coefficients in prelithiated and non-prelithiated SiCx electrodes. Furthermore, we show that the electrochemical performance of NMC-811‖ SiCx cells can be dramatically improved by prelithiation using PLMP. In particular, cycle life at 80% state of health (SoH) is almost tripled, increasing from 80 to 228 cycles. Moreover, X-ray photoelectron spectroscopy (XPS) and energy dispersive X-ray (EDX) analysis show that the composition of the cathode electrolyte interphase (CEI) is also markedly modified compared with non-prelithiated reference cells. In particular, the amount of LixPFyOz species is reduced as prelithiation using PLMP promotes a more effective SEI layer on the SiCx electrode, richer in LiF and Li3PO4, and richer in organic components that probably also contribute to the enhanced cycling stability. |
| 536 | _ | _ | |a 1223 - Batteries in Application (POF4-122) |0 G:(DE-HGF)POF4-1223 |c POF4-122 |f POF IV |x 0 |
| 536 | _ | _ | |a 1222 - Components and Cells (POF4-122) |0 G:(DE-HGF)POF4-1222 |c POF4-122 |f POF IV |x 1 |
| 536 | _ | _ | |a 1221 - Fundamentals and Materials (POF4-122) |0 G:(DE-HGF)POF4-1221 |c POF4-122 |f POF IV |x 2 |
| 536 | _ | _ | |a SPIDER - Safe and Prelithiated hIgh energy DEnsity batteries based on sulphur Rocksalt and silicon chemistries (814389) |0 G:(EU-Grant)814389 |c 814389 |f H2020-NMBP-ST-IND-2018 |x 3 |
| 588 | _ | _ | |a Dataset connected to DataCite |
| 700 | 1 | _ | |a Mohrhardt, M. |0 P:(DE-Juel1)187471 |b 1 |
| 700 | 1 | _ | |a Lennartz, P. |0 P:(DE-Juel1)164855 |b 2 |u fzj |
| 700 | 1 | _ | |a de Meatza, I. |0 P:(DE-HGF)0 |b 3 |
| 700 | 1 | _ | |a Schmuck, M. |0 P:(DE-HGF)0 |b 4 |
| 700 | 1 | _ | |a Winter, M. |0 P:(DE-Juel1)166130 |b 5 |u fzj |
| 700 | 1 | _ | |a Paillard, E. |0 P:(DE-Juel1)166311 |b 6 |e Corresponding author |
| 773 | _ | _ | |a 10.1016/j.mtchem.2023.101587 |g Vol. 30, p. 101587 - |0 PERI:(DE-600)2879106-X |p 101587 - |t Materials today / Chemistry |v 30 |y 2023 |x 2468-5194 |
| 856 | 4 | _ | |y OpenAccess |u https://juser.fz-juelich.de/record/1024374/files/Effect%20of%20prelithiation%20with%20passivated%20lithium%20metal%20powder%20on%20passivation%20films%20on%20high-energy%20NMC-811%20and%20SiCx%20electrodes.pdf |
| 856 | 4 | _ | |y OpenAccess |x icon |u https://juser.fz-juelich.de/record/1024374/files/Effect%20of%20prelithiation%20with%20passivated%20lithium%20metal%20powder%20on%20passivation%20films%20on%20high-energy%20NMC-811%20and%20SiCx%20electrodes.gif?subformat=icon |
| 856 | 4 | _ | |y OpenAccess |x icon-1440 |u https://juser.fz-juelich.de/record/1024374/files/Effect%20of%20prelithiation%20with%20passivated%20lithium%20metal%20powder%20on%20passivation%20films%20on%20high-energy%20NMC-811%20and%20SiCx%20electrodes.jpg?subformat=icon-1440 |
| 856 | 4 | _ | |y OpenAccess |x icon-180 |u https://juser.fz-juelich.de/record/1024374/files/Effect%20of%20prelithiation%20with%20passivated%20lithium%20metal%20powder%20on%20passivation%20films%20on%20high-energy%20NMC-811%20and%20SiCx%20electrodes.jpg?subformat=icon-180 |
| 856 | 4 | _ | |y OpenAccess |x icon-640 |u https://juser.fz-juelich.de/record/1024374/files/Effect%20of%20prelithiation%20with%20passivated%20lithium%20metal%20powder%20on%20passivation%20films%20on%20high-energy%20NMC-811%20and%20SiCx%20electrodes.jpg?subformat=icon-640 |
| 909 | C | O | |o oai:juser.fz-juelich.de:1024374 |p openaire |p open_access |p driver |p VDB |p ec_fundedresources |p dnbdelivery |
| 910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 2 |6 P:(DE-Juel1)164855 |
| 910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 5 |6 P:(DE-Juel1)166130 |
| 913 | 1 | _ | |a DE-HGF |b Forschungsbereich Energie |l Materialien und Technologien für die Energiewende (MTET) |1 G:(DE-HGF)POF4-120 |0 G:(DE-HGF)POF4-122 |3 G:(DE-HGF)POF4 |2 G:(DE-HGF)POF4-100 |4 G:(DE-HGF)POF |v Elektrochemische Energiespeicherung |9 G:(DE-HGF)POF4-1223 |x 0 |
| 913 | 1 | _ | |a DE-HGF |b Forschungsbereich Energie |l Materialien und Technologien für die Energiewende (MTET) |1 G:(DE-HGF)POF4-120 |0 G:(DE-HGF)POF4-122 |3 G:(DE-HGF)POF4 |2 G:(DE-HGF)POF4-100 |4 G:(DE-HGF)POF |v Elektrochemische Energiespeicherung |9 G:(DE-HGF)POF4-1222 |x 1 |
| 913 | 1 | _ | |a DE-HGF |b Forschungsbereich Energie |l Materialien und Technologien für die Energiewende (MTET) |1 G:(DE-HGF)POF4-120 |0 G:(DE-HGF)POF4-122 |3 G:(DE-HGF)POF4 |2 G:(DE-HGF)POF4-100 |4 G:(DE-HGF)POF |v Elektrochemische Energiespeicherung |9 G:(DE-HGF)POF4-1221 |x 2 |
| 914 | 1 | _ | |y 2024 |
| 915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0200 |2 StatID |b SCOPUS |d 2023-08-26 |
| 915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0160 |2 StatID |b Essential Science Indicators |d 2023-08-26 |
| 915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1160 |2 StatID |b Current Contents - Engineering, Computing and Technology |d 2023-08-26 |
| 915 | _ | _ | |a Creative Commons Attribution CC BY 4.0 |0 LIC:(DE-HGF)CCBY4 |2 HGFVOC |
| 915 | _ | _ | |a JCR |0 StatID:(DE-HGF)0100 |2 StatID |b MATER TODAY CHEM : 2022 |d 2023-08-26 |
| 915 | _ | _ | |a IF >= 5 |0 StatID:(DE-HGF)9905 |2 StatID |b MATER TODAY CHEM : 2022 |d 2023-08-26 |
| 915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0150 |2 StatID |b Web of Science Core Collection |d 2023-08-26 |
| 915 | _ | _ | |a WoS |0 StatID:(DE-HGF)0113 |2 StatID |b Science Citation Index Expanded |d 2023-08-26 |
| 915 | _ | _ | |a OpenAccess |0 StatID:(DE-HGF)0510 |2 StatID |
| 915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1150 |2 StatID |b Current Contents - Physical, Chemical and Earth Sciences |d 2023-08-26 |
| 915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0300 |2 StatID |b Medline |d 2023-08-26 |
| 915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0199 |2 StatID |b Clarivate Analytics Master Journal List |d 2023-08-26 |
| 920 | _ | _ | |l yes |
| 920 | 1 | _ | |0 I:(DE-Juel1)IEK-12-20141217 |k IEK-12 |l Helmholtz-Institut Münster Ionenleiter für Energiespeicher |x 0 |
| 980 | 1 | _ | |a FullTexts |
| 980 | _ | _ | |a journal |
| 980 | _ | _ | |a VDB |
| 980 | _ | _ | |a UNRESTRICTED |
| 980 | _ | _ | |a I:(DE-Juel1)IEK-12-20141217 |
| 981 | _ | _ | |a I:(DE-Juel1)IMD-4-20141217 |
| Library | Collection | CLSMajor | CLSMinor | Language | Author |
|---|