001     1024374
005     20250203103120.0
024 7 _ |a 10.1016/j.mtchem.2023.101587
|2 doi
024 7 _ |a 10.34734/FZJ-2024-02124
|2 datacite_doi
024 7 _ |a WOS:001017064200001
|2 WOS
037 _ _ |a FZJ-2024-02124
082 _ _ |a 600
100 1 _ |a Esen, E.
|0 P:(DE-Juel1)176765
|b 0
245 _ _ |a Effect of prelithiation with passivated lithium metal powder on passivation films on high-energy NMC-811 and SiCx electrodes
260 _ _ |a Amsterdam [u.a.]
|c 2023
|b Elsevier Ltd.
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1712739434_24402
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a The effect of prelithiation using passivated lithium metal powder (PLMP) pressed onto SiCx anodes is reported for NMC-811‖ SiCx cells with high energy mass loadings. The effect of prelithiation degree and storage time after cell assembly on the formation and growth of the solid electrolyte interphase (SEI) was elucidated by impedance spectroscopy (EIS) and operando solid-state 7Li nuclear magnetic resonance (NMR) spectroscopy, which allowed determining the optimal storage period for the prelithiated cells. The galvanostatic intermittent titration technique (GITT) was used to compare apparent Li+ diffusion coefficients in prelithiated and non-prelithiated SiCx electrodes. Furthermore, we show that the electrochemical performance of NMC-811‖ SiCx cells can be dramatically improved by prelithiation using PLMP. In particular, cycle life at 80% state of health (SoH) is almost tripled, increasing from 80 to 228 cycles. Moreover, X-ray photoelectron spectroscopy (XPS) and energy dispersive X-ray (EDX) analysis show that the composition of the cathode electrolyte interphase (CEI) is also markedly modified compared with non-prelithiated reference cells. In particular, the amount of LixPFyOz species is reduced as prelithiation using PLMP promotes a more effective SEI layer on the SiCx electrode, richer in LiF and Li3PO4, and richer in organic components that probably also contribute to the enhanced cycling stability.
536 _ _ |a 1223 - Batteries in Application (POF4-122)
|0 G:(DE-HGF)POF4-1223
|c POF4-122
|f POF IV
|x 0
536 _ _ |a 1222 - Components and Cells (POF4-122)
|0 G:(DE-HGF)POF4-1222
|c POF4-122
|f POF IV
|x 1
536 _ _ |a 1221 - Fundamentals and Materials (POF4-122)
|0 G:(DE-HGF)POF4-1221
|c POF4-122
|f POF IV
|x 2
536 _ _ |a SPIDER - Safe and Prelithiated hIgh energy DEnsity batteries based on sulphur Rocksalt and silicon chemistries (814389)
|0 G:(EU-Grant)814389
|c 814389
|f H2020-NMBP-ST-IND-2018
|x 3
588 _ _ |a Dataset connected to DataCite
700 1 _ |a Mohrhardt, M.
|0 P:(DE-Juel1)187471
|b 1
700 1 _ |a Lennartz, P.
|0 P:(DE-Juel1)164855
|b 2
|u fzj
700 1 _ |a de Meatza, I.
|0 P:(DE-HGF)0
|b 3
700 1 _ |a Schmuck, M.
|0 P:(DE-HGF)0
|b 4
700 1 _ |a Winter, M.
|0 P:(DE-Juel1)166130
|b 5
|u fzj
700 1 _ |a Paillard, E.
|0 P:(DE-Juel1)166311
|b 6
|e Corresponding author
773 _ _ |a 10.1016/j.mtchem.2023.101587
|g Vol. 30, p. 101587 -
|0 PERI:(DE-600)2879106-X
|p 101587 -
|t Materials today / Chemistry
|v 30
|y 2023
|x 2468-5194
856 4 _ |y OpenAccess
|u https://juser.fz-juelich.de/record/1024374/files/Effect%20of%20prelithiation%20with%20passivated%20lithium%20metal%20powder%20on%20passivation%20films%20on%20high-energy%20NMC-811%20and%20SiCx%20electrodes.pdf
856 4 _ |y OpenAccess
|x icon
|u https://juser.fz-juelich.de/record/1024374/files/Effect%20of%20prelithiation%20with%20passivated%20lithium%20metal%20powder%20on%20passivation%20films%20on%20high-energy%20NMC-811%20and%20SiCx%20electrodes.gif?subformat=icon
856 4 _ |y OpenAccess
|x icon-1440
|u https://juser.fz-juelich.de/record/1024374/files/Effect%20of%20prelithiation%20with%20passivated%20lithium%20metal%20powder%20on%20passivation%20films%20on%20high-energy%20NMC-811%20and%20SiCx%20electrodes.jpg?subformat=icon-1440
856 4 _ |y OpenAccess
|x icon-180
|u https://juser.fz-juelich.de/record/1024374/files/Effect%20of%20prelithiation%20with%20passivated%20lithium%20metal%20powder%20on%20passivation%20films%20on%20high-energy%20NMC-811%20and%20SiCx%20electrodes.jpg?subformat=icon-180
856 4 _ |y OpenAccess
|x icon-640
|u https://juser.fz-juelich.de/record/1024374/files/Effect%20of%20prelithiation%20with%20passivated%20lithium%20metal%20powder%20on%20passivation%20films%20on%20high-energy%20NMC-811%20and%20SiCx%20electrodes.jpg?subformat=icon-640
909 C O |o oai:juser.fz-juelich.de:1024374
|p openaire
|p open_access
|p driver
|p VDB
|p ec_fundedresources
|p dnbdelivery
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 2
|6 P:(DE-Juel1)164855
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 5
|6 P:(DE-Juel1)166130
913 1 _ |a DE-HGF
|b Forschungsbereich Energie
|l Materialien und Technologien für die Energiewende (MTET)
|1 G:(DE-HGF)POF4-120
|0 G:(DE-HGF)POF4-122
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-100
|4 G:(DE-HGF)POF
|v Elektrochemische Energiespeicherung
|9 G:(DE-HGF)POF4-1223
|x 0
913 1 _ |a DE-HGF
|b Forschungsbereich Energie
|l Materialien und Technologien für die Energiewende (MTET)
|1 G:(DE-HGF)POF4-120
|0 G:(DE-HGF)POF4-122
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-100
|4 G:(DE-HGF)POF
|v Elektrochemische Energiespeicherung
|9 G:(DE-HGF)POF4-1222
|x 1
913 1 _ |a DE-HGF
|b Forschungsbereich Energie
|l Materialien und Technologien für die Energiewende (MTET)
|1 G:(DE-HGF)POF4-120
|0 G:(DE-HGF)POF4-122
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-100
|4 G:(DE-HGF)POF
|v Elektrochemische Energiespeicherung
|9 G:(DE-HGF)POF4-1221
|x 2
914 1 _ |y 2024
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2023-08-26
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2023-08-26
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1160
|2 StatID
|b Current Contents - Engineering, Computing and Technology
|d 2023-08-26
915 _ _ |a Creative Commons Attribution CC BY 4.0
|0 LIC:(DE-HGF)CCBY4
|2 HGFVOC
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b MATER TODAY CHEM : 2022
|d 2023-08-26
915 _ _ |a IF >= 5
|0 StatID:(DE-HGF)9905
|2 StatID
|b MATER TODAY CHEM : 2022
|d 2023-08-26
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2023-08-26
915 _ _ |a WoS
|0 StatID:(DE-HGF)0113
|2 StatID
|b Science Citation Index Expanded
|d 2023-08-26
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1150
|2 StatID
|b Current Contents - Physical, Chemical and Earth Sciences
|d 2023-08-26
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2023-08-26
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2023-08-26
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)IEK-12-20141217
|k IEK-12
|l Helmholtz-Institut Münster Ionenleiter für Energiespeicher
|x 0
980 1 _ |a FullTexts
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)IEK-12-20141217
981 _ _ |a I:(DE-Juel1)IMD-4-20141217


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21