| Home > Publications database > A latent clinical-anatomical dimension relating metabolic syndrome to brain structure and cognition > print |
| 001 | 1024382 | ||
| 005 | 20250204113820.0 | ||
| 024 | 7 | _ | |a 10.7554/eLife.93246 |2 doi |
| 024 | 7 | _ | |a 10.34734/FZJ-2024-02131 |2 datacite_doi |
| 024 | 7 | _ | |a 38512127 |2 pmid |
| 024 | 7 | _ | |a WOS:001189584800001 |2 WOS |
| 037 | _ | _ | |a FZJ-2024-02131 |
| 082 | _ | _ | |a 600 |
| 100 | 1 | _ | |a Petersen, Marvin |0 P:(DE-Juel1)189067 |b 0 |e Corresponding author |u fzj |
| 245 | _ | _ | |a A latent clinical-anatomical dimension relating metabolic syndrome to brain structure and cognition |
| 260 | _ | _ | |a Cambridge |c 2024 |b eLife Sciences Publications |
| 336 | 7 | _ | |a article |2 DRIVER |
| 336 | 7 | _ | |a Output Types/Journal article |2 DataCite |
| 336 | 7 | _ | |a Journal Article |b journal |m journal |0 PUB:(DE-HGF)16 |s 1712120200_13588 |2 PUB:(DE-HGF) |
| 336 | 7 | _ | |a ARTICLE |2 BibTeX |
| 336 | 7 | _ | |a JOURNAL_ARTICLE |2 ORCID |
| 336 | 7 | _ | |a Journal Article |0 0 |2 EndNote |
| 520 | _ | _ | |a he link between metabolic syndrome (MetS) and neurodegenerative as well as cerebrovascular conditions holds substantial implications for brain health in at-risk populations. This study elucidates the complex relationship between MetS and brain health by conducting a comprehensive examination of cardiometabolic risk factors, brain morphology, and cognitive function in 40,087 individuals. Multivariate, data-driven statistics identified a latent dimension linking more severe MetS to widespread brain morphological abnormalities, accounting for up to 71% of shared variance in the data. This dimension was replicable across sub-samples. In a mediation analysis, we could demonstrate that MetS-related brain morphological abnormalities mediated the link between MetS severity and cognitive performance in multiple domains. Employing imaging transcriptomics and connectomics, our results also suggest that MetS-related morphological abnormalities are linked to the regional cellular composition and macroscopic brain network organization. By leveraging extensive, multi-domain data combined with a dimensional stratification approach, our analysis provides profound insights into the association of MetS and brain health. These findings can inform effective therapeutic and risk mitigation strategies aimed at maintaining brain integrity.Keywords: brain morphology; cognitive function; connectomics; human; imaging transcriptomics; magnetic resonance imaging; medicine; metabolic syndrome; neuroscience. |
| 536 | _ | _ | |a 5251 - Multilevel Brain Organization and Variability (POF4-525) |0 G:(DE-HGF)POF4-5251 |c POF4-525 |f POF IV |x 0 |
| 588 | _ | _ | |a Dataset connected to CrossRef, Journals: juser.fz-juelich.de |
| 700 | 1 | _ | |a Hoffstaedter, Felix |0 P:(DE-Juel1)131684 |b 1 |
| 700 | 1 | _ | |a Nägele, Felix L |0 P:(DE-HGF)0 |b 2 |
| 700 | 1 | _ | |a Mayer, Carola |0 0000-0002-8065-8683 |b 3 |
| 700 | 1 | _ | |a Schell, Maximilian |0 P:(DE-HGF)0 |b 4 |
| 700 | 1 | _ | |a Rimmele, D Leander |0 P:(DE-HGF)0 |b 5 |
| 700 | 1 | _ | |a Zyriax, Birgit-Christiane |0 P:(DE-HGF)0 |b 6 |
| 700 | 1 | _ | |a Zeller, Tanja |0 P:(DE-HGF)0 |b 7 |
| 700 | 1 | _ | |a Kühn, Simone |0 P:(DE-HGF)0 |b 8 |
| 700 | 1 | _ | |a Gallinat, Jürgen |0 P:(DE-HGF)0 |b 9 |
| 700 | 1 | _ | |a Fiehler, Jens |b 10 |
| 700 | 1 | _ | |a Twerenbold, Raphael |0 0000-0003-3814-6542 |b 11 |
| 700 | 1 | _ | |a Omidvarnia, Amir |0 P:(DE-Juel1)188339 |b 12 |
| 700 | 1 | _ | |a Patil, Kaustubh R |0 P:(DE-Juel1)172843 |b 13 |
| 700 | 1 | _ | |a Eickhoff, Simon B |0 P:(DE-Juel1)131678 |b 14 |
| 700 | 1 | _ | |a Thomalla, Goetz |0 P:(DE-HGF)0 |b 15 |
| 700 | 1 | _ | |a Cheng, Bastian |0 P:(DE-HGF)0 |b 16 |
| 773 | _ | _ | |a 10.7554/eLife.93246 |g Vol. 12, p. RP93246 |0 PERI:(DE-600)2687154-3 |p RP93246 |t eLife |v 12 |y 2024 |x 2050-084X |
| 856 | 4 | _ | |y OpenAccess |u https://juser.fz-juelich.de/record/1024382/files/elife-93246-v1.pdf |
| 856 | 4 | _ | |y OpenAccess |x icon |u https://juser.fz-juelich.de/record/1024382/files/elife-93246-v1.gif?subformat=icon |
| 856 | 4 | _ | |y OpenAccess |x icon-1440 |u https://juser.fz-juelich.de/record/1024382/files/elife-93246-v1.jpg?subformat=icon-1440 |
| 856 | 4 | _ | |y OpenAccess |x icon-180 |u https://juser.fz-juelich.de/record/1024382/files/elife-93246-v1.jpg?subformat=icon-180 |
| 856 | 4 | _ | |y OpenAccess |x icon-640 |u https://juser.fz-juelich.de/record/1024382/files/elife-93246-v1.jpg?subformat=icon-640 |
| 909 | C | O | |o oai:juser.fz-juelich.de:1024382 |p openaire |p open_access |p VDB |p driver |p dnbdelivery |
| 910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 0 |6 P:(DE-Juel1)189067 |
| 910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 1 |6 P:(DE-Juel1)131684 |
| 910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 12 |6 P:(DE-Juel1)188339 |
| 910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 13 |6 P:(DE-Juel1)172843 |
| 910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 14 |6 P:(DE-Juel1)131678 |
| 913 | 1 | _ | |a DE-HGF |b Key Technologies |l Natural, Artificial and Cognitive Information Processing |1 G:(DE-HGF)POF4-520 |0 G:(DE-HGF)POF4-525 |3 G:(DE-HGF)POF4 |2 G:(DE-HGF)POF4-500 |4 G:(DE-HGF)POF |v Decoding Brain Organization and Dysfunction |9 G:(DE-HGF)POF4-5251 |x 0 |
| 914 | 1 | _ | |y 2024 |
| 915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0160 |2 StatID |b Essential Science Indicators |d 2023-08-22 |
| 915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1190 |2 StatID |b Biological Abstracts |d 2023-08-22 |
| 915 | _ | _ | |a WoS |0 StatID:(DE-HGF)0113 |2 StatID |b Science Citation Index Expanded |d 2023-08-22 |
| 915 | _ | _ | |a Fees |0 StatID:(DE-HGF)0700 |2 StatID |d 2023-08-22 |
| 915 | _ | _ | |a Creative Commons Attribution CC BY 4.0 |0 LIC:(DE-HGF)CCBY4 |2 HGFVOC |
| 915 | _ | _ | |a OpenAccess |0 StatID:(DE-HGF)0510 |2 StatID |
| 915 | _ | _ | |a Article Processing Charges |0 StatID:(DE-HGF)0561 |2 StatID |d 2023-08-22 |
| 915 | _ | _ | |a JCR |0 StatID:(DE-HGF)0100 |2 StatID |b ELIFE : 2022 |d 2024-12-28 |
| 915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0200 |2 StatID |b SCOPUS |d 2024-12-28 |
| 915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0300 |2 StatID |b Medline |d 2024-12-28 |
| 915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0501 |2 StatID |b DOAJ Seal |d 2024-07-30T13:58:16Z |
| 915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0500 |2 StatID |b DOAJ |d 2024-07-30T13:58:16Z |
| 915 | _ | _ | |a Peer Review |0 StatID:(DE-HGF)0030 |2 StatID |b DOAJ : Anonymous peer review |d 2024-07-30T13:58:16Z |
| 915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0600 |2 StatID |b Ebsco Academic Search |d 2024-12-28 |
| 915 | _ | _ | |a Peer Review |0 StatID:(DE-HGF)0030 |2 StatID |b ASC |d 2024-12-28 |
| 915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0199 |2 StatID |b Clarivate Analytics Master Journal List |d 2024-12-28 |
| 915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1040 |2 StatID |b Zoological Record |d 2024-12-28 |
| 915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1050 |2 StatID |b BIOSIS Previews |d 2024-12-28 |
| 915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0150 |2 StatID |b Web of Science Core Collection |d 2024-12-28 |
| 915 | _ | _ | |a IF >= 5 |0 StatID:(DE-HGF)9905 |2 StatID |b ELIFE : 2022 |d 2024-12-28 |
| 920 | _ | _ | |l yes |
| 920 | 1 | _ | |0 I:(DE-Juel1)INM-7-20090406 |k INM-7 |l Gehirn & Verhalten |x 0 |
| 980 | _ | _ | |a journal |
| 980 | _ | _ | |a VDB |
| 980 | _ | _ | |a UNRESTRICTED |
| 980 | _ | _ | |a I:(DE-Juel1)INM-7-20090406 |
| 980 | 1 | _ | |a FullTexts |
| Library | Collection | CLSMajor | CLSMinor | Language | Author |
|---|